Практическое занятие 1 Свойства теплового излучения

- **34.8.** Определить установившуюся температуру T зачерненной металлической пластинки, расположенной перпендикулярно солнечным лучам вне земной атмосферы на среднем расстоянии от Земли до Солнца. Значение солнечной постоянной $C = 1,4\kappa Д ж/(m^2 c)$.
- **34.13.** Мощность P излучения шара радиусом R = 10 см при некоторой постоянной температуре T равна 1 кВт. Найти эту температуру, считая шар серым телом с коэффициентом теплового излучения $a_m = 0.25$.
- **34.15.** Температура верхних слоев Солнца равна 5300 К. Считая Солнце абсолютно черным телом, определить длину волны λ_m , которой соответствует максимальная спектральная плотность энергетической светимости $r(\lambda, T)_{max}$ Солнца.
- **34.18.** Вследствие изменения температуры черного тела максимум спектральной плотности $r(\lambda,T)_{max}$ сместился с $\lambda_1=2,4$ мкм на $\lambda_2=0,8$ мкм. Как и во сколько раз изменились энергетическая светимость R тела и максимальная спектральная плотность энергетической светимости?
- **34.19.** При увеличении термодинамической температуры T абсолютно черного тела в два раза длина волны $\lambda_{\rm m}$, на которую приходится максимум спектральной плотности энергетической светимости, изменилась на $\Delta\lambda_{\rm m}$ =400 нм. Определить начальную и конечную температуры T_1 и T_2 .
- **34.21.** Максимальная спектральная плотность энергетической светимости $r(\lambda, T)_{max}$ абсолютно черного тела равна 4,16- 10^{11} Вт/м . На какую длину волны λ_m она приходится?
- **34.22.** Температура Γ абсолютно черного тела равна 2000 К. Определить: 1) спектральную плотность энергетической светимости $r(\lambda, T)$ для длины волны $\lambda = 600$ нм; 2) энергетическую светимость R в интервале длин волн от $\lambda_1 = 590$ нм до $\lambda_2 = 610$ нм. Принять, что средняя спектральная плотность энергетической светимости тела в этом интервале равна значению, найденному для длины волны $\lambda == 600$ нм.
- **34.23** Вином была получена эмпирическая формула распределения (по длинам волн) энергии в спектре излучения абсолютно черного тела $r(\lambda, T) = C_1 \lambda^{-5} \exp\left(-C_2/(\lambda T)\right)$, где $C_1 u C_2$ постоянные $(C_2 = 1,43 \ 10^{-2} \text{мK})$. Получить, используя приведенную формулу, закон смещения Вина и определить постоянную b в законе смещения.
- **34.24.** Распределение (по частотам) энергии в спектре излучения абсолютно черного тела было эмпирически установлено Вином $r(\omega, T) = \alpha \omega^5 \exp{(-\beta \omega/T)}$, где α и β постоянные (β = 7,61 10^{-12} cK). Используя эту формулу найти частоту ω_m , на которую приходится максимум энергии излучения при температуре T = 1000 K.
- **34.25.** Пренебрегая потерями на теплопроводность, найти мощность P электрического тока, подводимую к вольфрамовой нити диаметром d=0.5 мм и длиной l=20 см, для накаливания ее до температуры T=3000 К. Считать, что нить излучает как абсолютно черное тело.