НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАЛЕНДАРНЫЙ ПЛАН

учебных занятий по дисциплине: Лектор: профессор Дубровский В. Г.

Кафедра: ПиТФ

Факультет ФТФ Заведующий кафедрой: проф. Дубровский В. Г.

Курс: 1 Семестр: 1 Дата: 30.09.2013 г.

2013 / 2014 уч.год

2013 / 201 ² Неделя	Лекции	час	Практические (семинарские) занятия	час	Номер и назв. лабораторн ых работ	час
1	2	3	4	5	6	7
1 неделя с 2.09 по 7.09	1. Предмет физики. Системы отсчета, метод координат. 2. Векторы координат, скорости и ускорения.	4	Метод размерностей.	2		
2 неделя с 9.09 по 14.09	1. Способы описания движений в кинематике: координатный, векторный и естественный. 2. Законы Ньютона. Импульс. Закон сохранения импульса	4	Координатный и векторный способы описания движений.	2	Вводное занятие	4
3 неделя с 16.09 по 21.09	1. Центр инерции и его закон движ. Движ. тела с перемен. массой. 2. Работа, мощность и энергия в механике. Потенц. силовые поля.	4	Нормальное и тангенциальное ускорения.	2		
4 неделя с 23.09 по 28.09	1. Связь силы с потенц. энергией. Закон сохран. энергии в механике. 2. Упругие и неупр. столкновения частиц в нерелятивистском приближении. Импульсные диаграммы.	4	Распад частиц в нерелятивистском приближении.	2	Лаб. работа № 1	4
5 неделя с 30.09 по 5.10	1. Момент импульса частицы, его законы изменения и сохранения. 2. Элементы кинемат. вращат. движения твердого тела. Кинетич. энергия, момент импульса и момент инерции.	4	Упругие столкновения частиц.	2		
6 неделя с 7.10 по 12.10	 Принципы относит. Галилея и Эйнштейна. Постулаты СТО. Вывод преобразований Лоренца. 	4	Неупругие столкновения частиц.	2	Лаб. работа № 2	4
7 неделя с 14.10 по 19.10	1. Следствия преобразований Лоренца. 2. Четырехинтервал и собственное время. Причинно-следственная структура событий.	4	Момент импульса частицы, его законы изменения и сохранения.	2		
8 неделя с 21.10 по 26.10	1. Четырехимпульс, релятивистские импульс и энергия. 2. Законы движения систем частиц	4	Кинематика специальной теории относительности: замедл. хода времени, сокр. размеров движ. тел.	2	Лаб. работа № 3	4
9 неделя с 28.10 по 2.11	1. Момент импульса твердого тела. Основное уравнение динамики вращат. движ. тв. тела. 2. Своб. оси вращения. Главные моменты инерции. Кин. энергия вращат. движ.	4	Релятивистские импульс, энергия и кинетическая энергия.	2		
10 неделя с 4.11 по 9.11	 Своб. симметричный волчок. Гироскопы. Задача Кеплера: качеств. анализ орбит. 	4	Распады и столкновения релятивистских частиц. Динамика вращат. движ. твердого тела.	2	Лаб. работа № 4	4

11 неделя с 11.11 по 16.11	 Точное решение задачи Кеплера. Движение в неинерциальных системах отсчета. 	4	Динамика и энергетика вращат. движ. твердого тела	2		
12 неделя с 18.11 по 23.11	1. Термодинамич. и статистический методы. Уравнения состояния. 2. Работа, теплота и внутренняя энергия. Первое начало термодинамики и его применение к изопроцессам. Теплоемкости при постоянных давлении и объеме.	4	Задача Кеплера. Движение в неинерц. системах отсчета.	2	Лаб. работа № 5	4
13 неделя с 25.11 по 30.11	1. Адиабатический процесс. Цикл Карно и его к. п. д. 2. Равенство Клаузиуса для обратимых процессов и энтропия.	4	Уравнение состояния ид. газа. Первое начало термодинамики.	2		
14 неделя с 2.12 по 7.12	1. Энтропия и второе начало термодин., его разл. Формулировки. 2. Энтропия и вероятность. Элементы теории вероятностей.	4	Расчет к. п. д. идеальных тепловых машин.	2	Лаб. работа № 6	4
15 неделя с 9.12 по 14.12	Распределение молекул по скоростям. Барометрическая формула. Распределение Больцмана.	4	Энтропия. Рост энтропии в процессах выравнивания.	2		
c 16.12	Реальные газы. Уравнение Вандер-Ваальса. Элементарная теория явлений переноса.	4	Распределение Максвелла. Распределение Больцмана.	2	Лаб. работа № 7	4
17 неделя с 23.12 по 28.12	1. Фазовые переходы. Уравнение Клайперона-Клаузиуса. 2. Элементы гидростатики и гидродинамики. Уравнение Бернулли.	4	Явления переноса.	2		
18 неделя с 30.12 по 31.01	Зачетная неделя.				Зачетное занятие	4

Распределение часов обязательных аудиторных занятий и самостоятельной работы студентов по курсу:

Лекции	Практические занятия	Лабораторные работы	Расчетно- графические задания	Контрольные работы	Зачет	Экзамен	Примеч.
68	34	34	8	4			

Рекомендуемая литература:

№ п/п	Авторы	Название	Год издания	№ библ.
1.	Сивухин Д.В.	Общий курс физики. –Т. 1, 2 – М.: Наука.	Все годы изд.	
2.	Иродов И. Е.	Основные законы механики	Все годы изд.	
3.	Яворский Б. М., Детлаф А. А.	Курс физики	последние годы изд.	
4.	Фейнман, Лейтон, Сэндс	Фейнмановские лекции по физике, вып. 1,2, 4	Все годы изд.	
5.	Киттель В. и др.	Берклиевский курс физики, т.1	Все годы изд.	
6.	Матвеев А. Н.	Механика и специальная теория относительности	Все годы изд.	
7.	Тейлор, Уилер	Физика пространства-времени	Все годы изд.	
8.	Копылов Г.	Всего лишь кинематика	Все годы изд.	
9.	Иродов И. Е.	Задачи по физике	1988 и послед.	