



1. Получите формулу для сложения скоростей в специальной теории относительности, вычислите с помощью этой формулы скорость света от прожектора ракеты (см. рисунок) относительно Земли. Даны скорость света $\vec{C}_{\text{св/p}}$ относительно ракеты и скорость ракеты \vec{V} относительно

Земли.

- 2. Получите выражение полной энергии $E = \sqrt{(P\vec{C})^2 + (mC^2)^2}$ релятивистской частицы через ее релятивистский импульс. Что следует из этой формулы для кинетической энергии безмассовой частицы?
- 3. Пусть \vec{A} некоторая векторная физическая величина такая, что $|\vec{A}|$ = const . Докажите, что в таком случае вектор скорости изменения векторной величины $d\vec{A}/dt$ перпендикулярен самой векторной величине \vec{A} .
- 4. Докажите теорему о приращении кинетической энергии нерелятивистской частицы. Приведите известные Вам следствия этой теоремы.
- 5. Цилиндр радиусом R массой m скатывается без проскальзывания по наклонной плоскости с высоты H. Какую скорость будет иметь цилиндр у основания наклонной плоскости?

6. Для адиабатического процесса (см. рисунок) с идеальным газом вычислите работу $A_{1\to 2}$ и изменение внутренней энергии $E_{1\to 2}$ газа, характеристики начального и конечного состояния газа предполагаются известными.

- 7. Получите формулу для КПД цикла Карно, используя T, S диаграмму.
- 8. Вычислите изменение энтропии идеального газа в процессе Гей-Люссака расширения газа в пустоту. Известно начальное состояние (P_0, V_0) газа, при расширении в пустоту объем газа увеличился вдвое.