ИЗМЕРЕНИЕ ФИЗИЧЕСКИХ ВЕЛИЧИН

Измерение — процесс определения количественного значения физической величины опытным путём с помощью специальных технических средств (приборов) и, выражении этого значения в принятых единицах.

Измерение – сравнение с эталоном.

Результатом измерения является некоторое число, которое показывает, во сколько раз измеренная физическая величина больше или меньше другой величины, принятой за единицу.

Для осуществления измерения требуется наличие измерительной меры и измерительного прибора.

Измерительная мера — вещественное воспроизведение единицы измеряемой физической величины с определённой наперёд заданной точностью. Примерами являются наборы гирь, магазины сопротивлений, магазины ёмкостей и др.

Измерительный прибор – средство измерений, предназначенное для выдачи количественной информации об измеряемой величине в доступной для восприятия форме, например, измерительная линейка, рулетка, амперметр, вольтметр и др.

Международная система единиц (СИ)

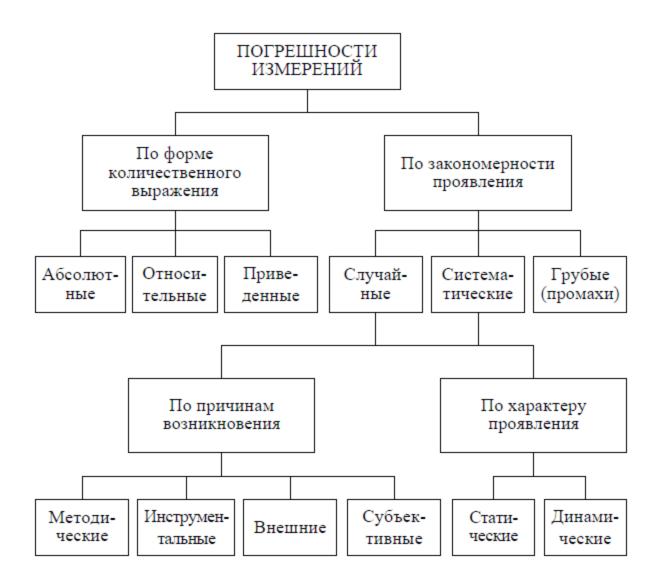
Величина	Единица				
Наименование	Размерность	Наименование			
Длина	L	метр			
Macca	M	килограмм			
Время	Т	секунда			

Для любой физической величины существует лишь одна главная единица и набор дольных и кратных единиц, образуемых стандартным образом с помощью десятичных приставок.

Виды измерений

Прямое измерение — измерение, при котором искомое значение физической величины получают непосредственно.

Косвенное измерение — определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной.


Истинное значение физической величины — значение, которое идеальным образом характеризует в количественном и качественном отношении соответствующую физическую величину. Как правило, истинное значение неизвестно.

Измеренное значение физической величины — значение, полученное при измерении с применением конкретных методов и средств измерений.

Действительное значение физической величины — значение, приближенное к истинному значению настолько, что в поставленной измерительной задаче может быть использовано вместо истинного значения. Определяется экспериментально и соответствует истинному значению величины с известной погрешностью и доверительной вероятностью.

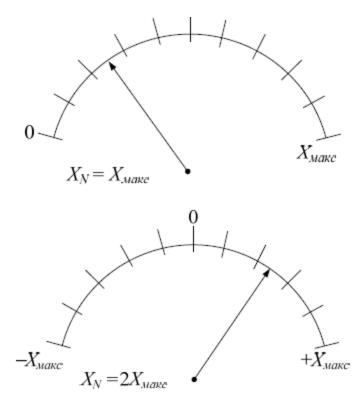
Погрешность измерения — оценка отклонения измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения.

Оценка погрешностей измерения является одной из основных задач при обработке результатов любого эксперимента.

Классификация погрешностей

По форме представления:

🗖 абсолютная погрешность


$$\Delta = x - x_0$$

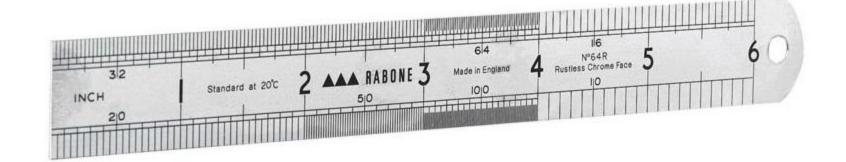
🗖 относительная погрешность

$$\mathcal{S} = \frac{\Delta}{x_0} \cdot 100\%$$

🗖 приведённая погрешность

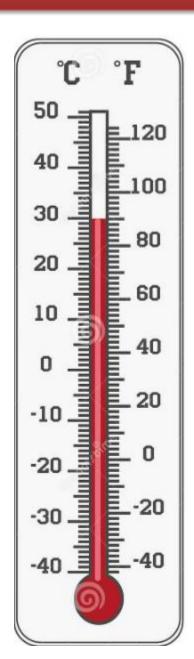
$$\gamma_{np} = \frac{\Delta}{x_N} \cdot 100\%$$

Классификация погрешностей

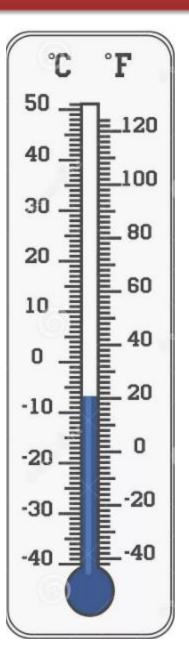

По характеру проявления:

Грубая погрешность (промах) — погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора или если произошло замыкание в электрической цепи).

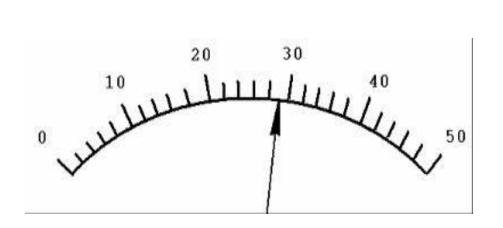
Систематические погрешности — погрешности, остающиеся неизменными (как по величине, так и по знаку) или закономерно изменяющиеся (по известному закону) при повторных измерениях одной и той же величины. Они могут быть связаны с ошибками приборов (инструментальные погрешности) и с самой постановкой опыта (методические погрешности).

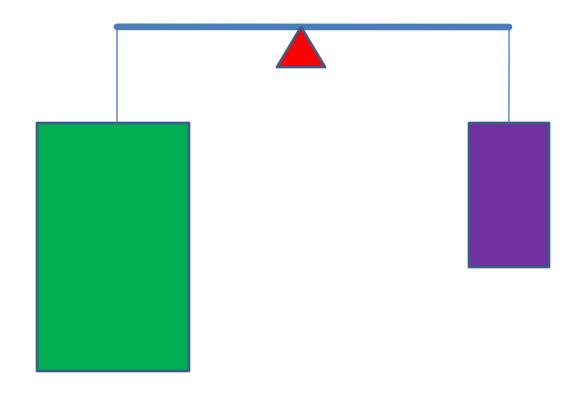

Случайные погрешности — погрешности, изменяющиеся случайным, непредсказуемым образом (по величине и по знаку) при многократных измерениях одной и той же величины.

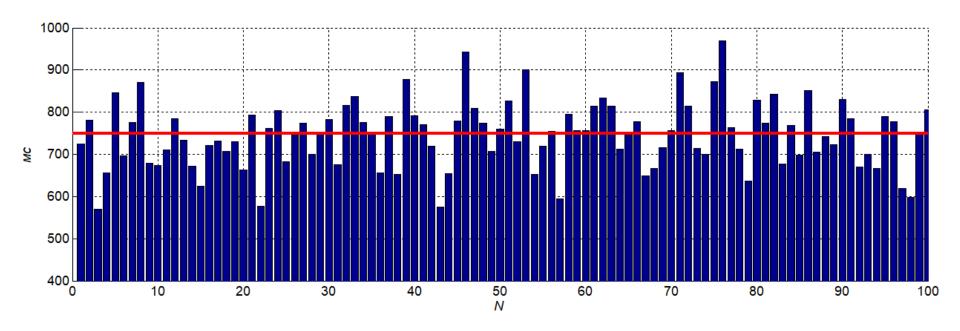
Грубая погрешность



Систематическая погрешность




Инструментальная погрешность простого стрелочного прибора равняется половине минимальной цене деления.



Если прибор имеет дискретную индикацию, то инструментальная погрешность равняется минимальной цене деления.

Методическая погрешность

Случайная погрешность

Т, мс				
макс	970			
мин	572			
среднее	750			

Пульс человека

Теория вероятности

Закономерности поведения случайных величин, изучает теория вероятностей.

Вероятность — отношение числа испытаний, удовлетворяющих какому-либо условию, к общему числу испытаний. Максимальное значение вероятности равно единице (все испытания удовлетворяют заданному условию).

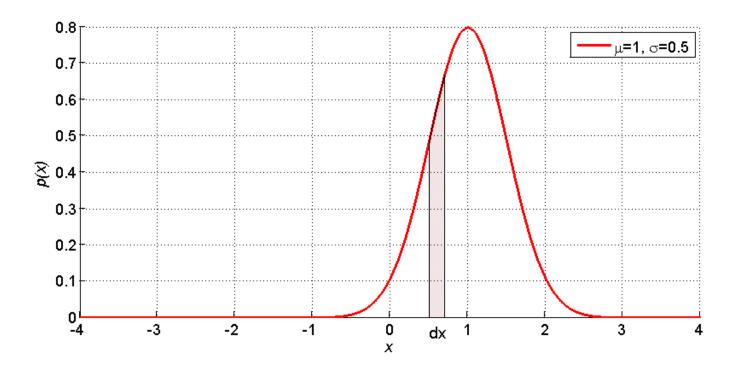
При описании случайных погрешностей используются следующие предположения:

- 1. Погрешности могут принимать непрерывный ряд значений.
- 2. Большие отклонения измеренных значений от истинного значения измеряемой величины встречаются реже (менее вероятны), чем малые.
- 3. Отклонения в обе стороны от истинного значения равновероятны.

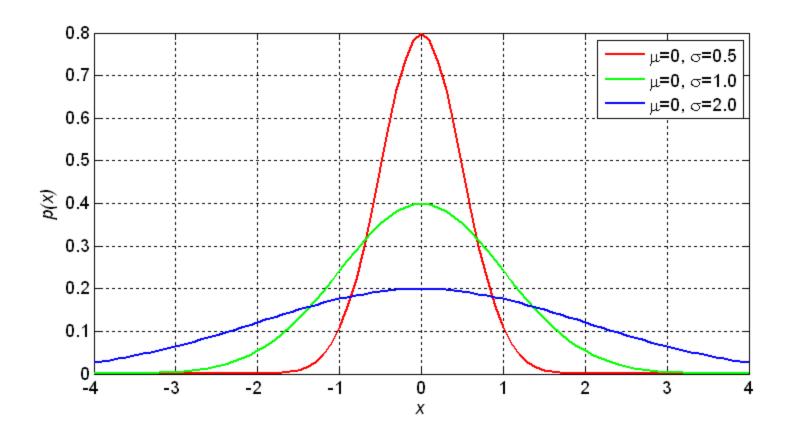
Случайные погрешности

Случайные погрешности подчиняются распределению Гаусса.

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 плотность вероятности

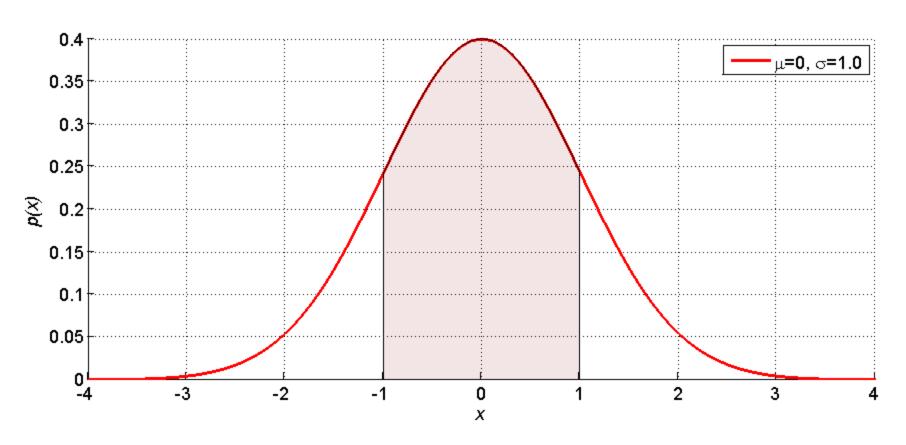

Существует наиболее вероятное (модальное) значение μ .

Гауссово распределение симметрично относительно μ .


Чем больше отклонение x от μ , тем реже оно встречается.

 σ – стандартное или среднеквадратичное отклонение (СКО).

Нормальное распределение



- вероятность того, что результат измерения лежит в интервале x + dx.

Мерой отклонениях от среднего является σ — стандартное отклонение.

В интервал (μ - σ , μ + σ) попадает примерно 68% всех результатов измерений.

$$x_{ucm} \equiv \mu = x_1 \pm \sigma; P = 0,68$$

$$x_{ucm} \equiv \mu = x_1 \pm \sigma; P = 0,68$$

$$x_{ucm} \equiv \mu = x_1 \pm 2\sigma; \quad P \approx 0,95$$

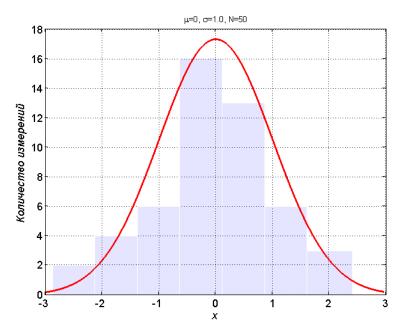
$$x_{ucm} \equiv \mu = x_1 \pm 3\sigma; \quad P \approx 0,9973$$

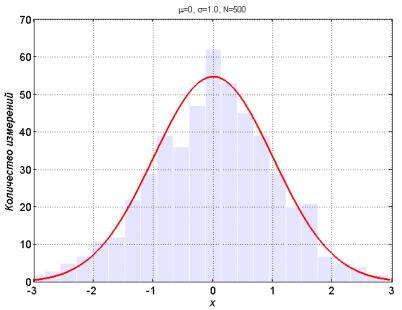
$$\begin{bmatrix} x_{ucm} - t\sigma & x_{ucm} + t\sigma \end{bmatrix}$$

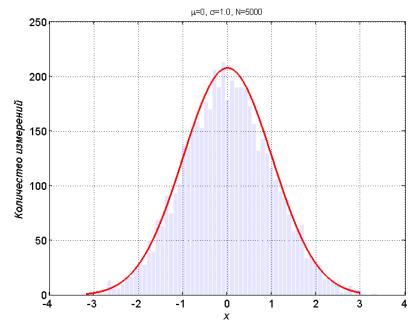
$$\xrightarrow{2\sigma} \qquad \qquad P = 0,9937$$

Гистограмма

Гистограмма — графический способ представления распределения большого числа данных

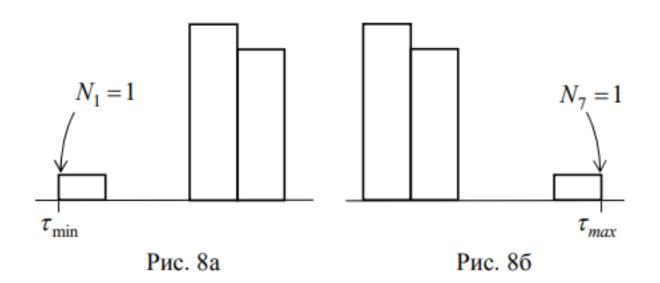

$$b = \frac{(\tau_{\text{max}} - \tau_{\text{min}})}{k}$$
 $k \approx \sqrt{N}$


$$P_1 + \ldots + P_7 = \frac{N_1}{N} + \ldots + \frac{N_7}{N} = \frac{N_1 + \ldots + N_7}{N} = 1$$


$$p = \frac{N_m}{Nb}$$


$$\lim_{N \to \infty} \frac{N_m/N}{b} = p(x) = \frac{p(x)dx}{dx}$$

$$b \to 0$$



ПШПВ - полуширина на полувысоте.

Критерий 3 сигма

<u>Грубая погрешность.</u> Иногда на гистограмме есть крайний изолированный прямоугольник, содержащий всего одно значение, обязательно минимальное или максимальное (рис. 8).

Прямые многократные измерения

$$\overline{x} = \frac{1}{N} \sum_{i}^{N} x_{i}$$

выборочное среднее

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \left(x_i - \overline{x} \right)^2}$$

выборочное СКО

$$\Delta = \frac{t(P, N) \cdot s}{\sqrt{N}}$$

доверительный интервал

Р – доверительная вероятность

$$x_{ucm} = \overline{x} \pm \Delta; \quad P = \dots$$

Таблица коэффициентов Стьюдента

Таблица 4

	Р					
N	0,68	0,9	0,95	0,99	0,997	
	t(P,N)					
2	1,84	6,3	12,7	63,6	212,3	
3	1,32	2,9	4,3	9,9	182	
4	1,20	2,4	3,2	5,8	9,0	
5	1,14	2,1	2,8	4,6	6,4	
6	1,11	2,0	2,6	4,0	5,4	
7	1,09	1,9	2,4	3,7	4,8	
8	1,08	1,9	2,4	3,5	4,4	
9	1,07	1,9	2,3	3,4	4,2	
10	1,06	1,8	2,3	3,2	4,0	
15	1,04	1,8	2,1	3,0	3,6	
20	1,03	1,7	2,1	2,9	3,4	
30	1,02	1,7	2,0	2,8	3,2	
50	1,01	1,7	2,0	2,7	3,1	

6. Полная погрешность

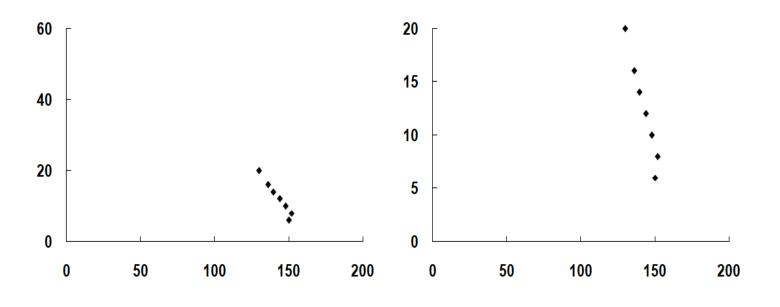
Сложение погрешностей. В теории вероятностей показывается, что в тех случаях, когда погрешности вызываются несколькими независимыми друг от друга случайными причинами, то складываются не сами погрешности, а их квадраты. Поэтому полная абсолютная погрешность Δa измеряемой величины через ее случайную Δa_{cn} и приборную Δa_{np} погрешности выражается формулой

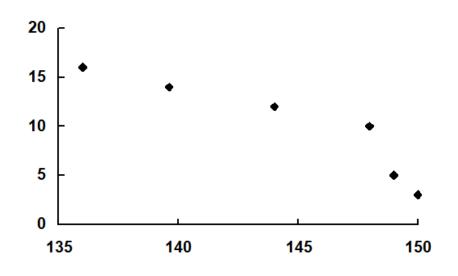
$$\Delta a = \sqrt{\Delta a_{cn}^2 + \Delta a_{np}^2} \ . \tag{6}$$

Здесь предполагается, что погрешностям Δa_{cn} и Δa_{np} соответствуют приблизительно одинаковые доверительные вероятности. Такую же доверительную вероятость будет иметь и Δa .

Правила округления рассчитанного значения погрешности и полученного экспериментального результата измерения.

- 1. Погрешность результата измерения указывается двумя значащими цифрами, если первая из них равна 1 или 2, и одной, если первая есть 3 и более.
- 2. Значение центра доверительного интервала округляется до того же десятичного разряда, которым оканчивается округленное значение абсолютной погрешности.
- Округление производится лишь в окончательном ответе, а все предварительные вычисления проводят с однимдвумя лишними знаками.


$$x=62.71 c$$
, $\Delta=4.5 c$ $x=(63\pm 5) c$


$$L = (6.495 \pm 0.017) \cdot 10^{-2} \text{ M}.$$

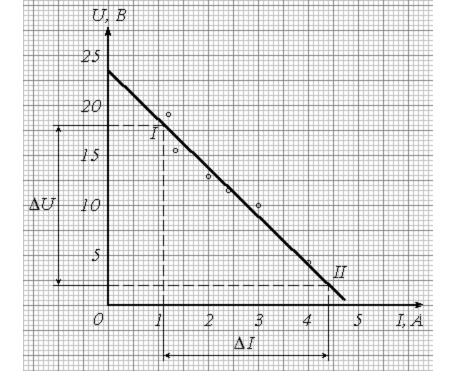
ПОСТРОЕНИЕ ГРАФИКОВ

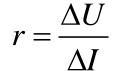
- •График строится на миллиметровой бумаге.
- •Размер графика не менее листа формата А5.
- •По горизонтальной оси откладывается причина, а по вертикальной следствие.
- •Предпочтительней строить график так, чтобы он представлял собой прямую линию. Если исследуемая зависимость таковой не является, то следует провести линеаризацию. Например, зависимость параболического вида $y=ax^2$ следует строить не как функцию y(x), а как функцию y(x2).
- •Начало отсчета на графике не обязано совпадать с точкой y=x=0.
- •Экспериментальные точки изображаются четко и крупно: в виде кружков, крестиков и т.п.
- •Масштаб графика следует выбирать так, чтобы нанесенные точки занимали всю область построения, не сливаясь друг с другом.

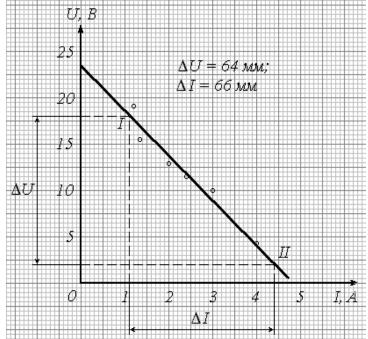
ПОСТРОЕНИЕ ГРАФИКОВ

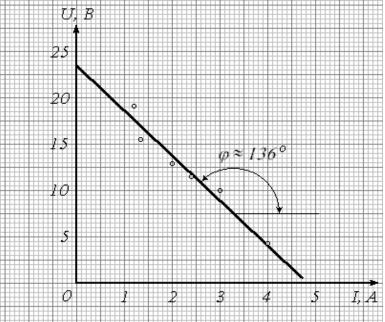
ПОСТРОЕНИЕ ГРАФИКОВ

- •Масштабы по осям должны быть простыми (1 единица измерения на деление, 0.1, 10,100 и т.д. ед. изм./деление), чтобы при построении не производить сложных вычислений. Возможны также величины, кратные 2 и 5 (0.2, 0.5 ед. изм./ деление и т.п.).
- •На осях должны быть проставлены обозначения и единицы измерения.
- •По осям откладываются только масштабные единицы.
- •Координаты экспериментальных точек на осях не указывают, а линии, определяющие эти координаты, не проводят.
- •Экспериментально найденные зависимости изображают в виде плавных кривых.

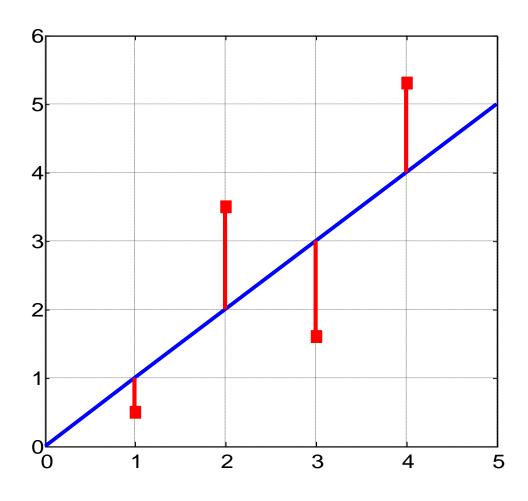

Реальный график, построенный студентом, прослушавшим данное сообщение

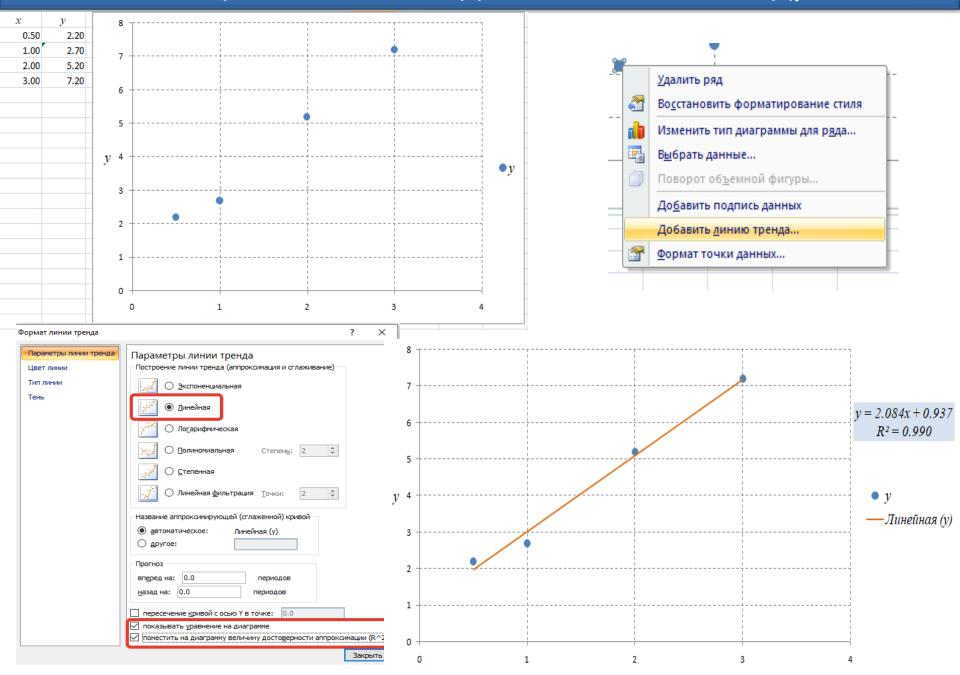



$$I = \frac{\mathcal{E}}{R + r}$$


$$IR = \varepsilon - Ir$$

$$U = \varepsilon - Ir$$





Метод наименьших квадратов

$$y = a_1 + a_2 x$$

Реализация в Excel метода наименьших квадратов

Косвенные измерения

Погрешность косвенных воспроизводимых измерений — погрешность вычисляемой (не измеряемой непосредственно) величины:

$$y = y(x)$$

$$x = \overline{x} \pm \Delta x$$

$$y + \Delta y = y(\overline{x} + \Delta x)$$

$$\Delta y = y(\overline{x} + \Delta x) - y$$

$$\Delta y = \frac{dy}{dx} \Delta x$$

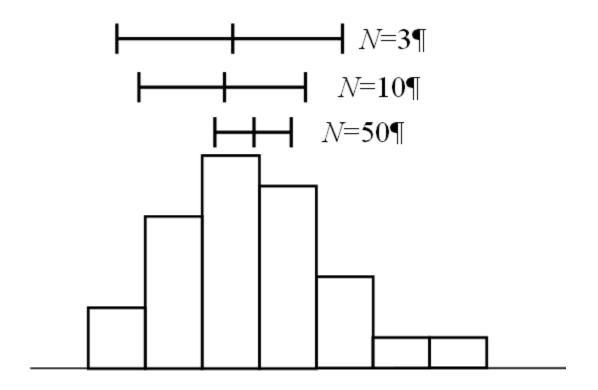
Косвенные измерения

$$F = F(x, y, z, ...) \qquad \overline{F} = F(\overline{x}, \overline{y}, \overline{z} ...)$$

$$\sigma_{norm}^2 = \sigma_1^2 + \sigma_2^2 + ... + \sigma_k^2$$

$$\sigma_F^2 = \left(\frac{\partial F}{\partial x}\sigma_x\right)^2 + \left(\frac{\partial F}{\partial y}\sigma_y\right)^2 + \left(\frac{\partial F}{\partial z}\sigma_z\right)^2 + \dots$$

$$\sigma_F = \sqrt{\left(\frac{\partial F}{\partial x}\sigma_x\right)^2 + \left(\frac{\partial F}{\partial y}\sigma_y\right)^2 + \left(\frac{\partial F}{\partial z}\sigma_z\right)^2 + \dots}\bigg|_{x=\overline{x}, y=\overline{y}, z=\overline{z},\dots}$$


Косвенные измерения

$$F(x, y, z) = \frac{x^{\alpha} y^{\beta}}{z^{\gamma}}$$

$$\sigma_F = \overline{F} \sqrt{(\alpha \frac{\sigma_x}{\overline{x}})^2 + (\beta \frac{\sigma_y}{\overline{y}})^2 + (\gamma \frac{\sigma_z}{\overline{z}})^2}$$

Задание к вводному занятию

- 1. Измерить время соударения шаров пятьдесят раз.
- 2. Построить гистограмму результатов измерений.
- 3. Графически оценить полуширину на полувысоте (ПШПВ) гистограммы.
- 4. Рассчитать выборочное среднее и СКО.
- 5. Найти отношение ПШПВ и СКО
- 6. Сделать вывод, подтверждается или нет нормальное распределение результатов измерений.
- 7. Рассчитать доверительный интервал для математического ожидания.
- 8. Изобразить на гистограмме полученный доверительный интервал.
- 9. Для любых трёх и десяти результатов измерений повторить пункты задания 7 и 8.

Таблица измерений

N	т, мкс	<u>k</u>	$\overline{ au}$, MKC	$\left(\overline{ au}- au ight)^2$, MK $c_{_{\cdots}}^2$	S, мкс
1					
3					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
50					

Таблица для построения гистограммы

Номер	Границы і	интервала	Число	Относительная
интервала			измерений	доля
<u>k</u>	$ au_L$, мк c	$ au_R$, MKC	N_{k}	$P=N_{k}/N$
1				
2				
3				
4				
5				
6				
7				

С · целью · сохранения · точности · рекомендуется · в · промежуточных · результатах · оставлять · на · 1—2 · значащих · цифры · больше, · чем · в · первичных · данных . · Значащим · цифрами · являются · все · цифры, · кроме · нулей · впереди · целой · части · числа. ¶

Числовой результат следует представлять в стандартном виде $a=a_0\cdot 10^n$, где целое число n - порядок числа a, а основа числа a_0 находится в промежутке [1,10[, например, $e=1,6021\cdot 10^{19}$ Кл; $c=2,9979\cdot 10^8$ мс⁻¹.