Моделирование электрических полей

Электрическое поле точечного заряда

Электрический заряд порождает в окружающем пространстве непрерывную материю – электрическое поле. Электрическое поле – форма существования материи, посредством которой осуществляется взаимодействие зарядов. Количественной характеристикой электрического поля служит векторная физическая величина – напряженность электрического поля. Напряженность электрического поля – сила, действующая на пробный точечный единичный положительный заряд, помещенный в данную точку поля. Электрическое поле точечного заряда определяется выражением

$$\vec{E} = \frac{1}{4\pi\varepsilon\varepsilon_o} \frac{q}{r^3} \vec{r}$$

где $\varepsilon_{a} = 8.854 \cdot 10^{-12} \, \Phi/M$ электрическая постоянная.

Силовая линия (линия напряженности) - воображаемая линия, касательная к которой в каждой точке совпадает с направлением вектора напряженности. Применяется для визуализации векторного поля. Силовые линии обладают следующими свойствами:

- ✓ начинаются на положительных зарядах, оканчиваются на отрицательных либо уходят в бесконечность;
- ✓ не замкнуты;
- ✓ не пересекаются;
- ✓ сгущаются там, где напряженность поля больше.

Потенциал электрического поля в точке есть работа сил поля по перемещению пробного точечного единичного положительного заряда из данной точки на бесконечность. Если напряженность – силовая характеристика поля, то потенциал – энергетическая характеристика.

Потенциал точечного заряда имеет вид

$$\varphi(r) = \frac{q}{4\pi\varepsilon\varepsilon_o r}$$

Для визуализации поля применяются эквипотенциальные поверхности (линии) – поверхности (линии), на которых потенциал электрического поля неизменен.

Поскольку потенциал и напряженность служат для описания одного и того же объекта, между ними должно быть однозначное соответствие. Связь между скалярным и векторным описанием электрического поля выражается следующим образом:

$$\vec{E} = -\vec{\nabla}\phi$$

Визуализацию средствами *Matlab* поля точечного заряда начнём с потенциала, скалярное представление проще векторного. В качестве меры заряда выберем значение 8.854 пКл. Пусть в начале координат расположен заряд, равный 100 таких единиц.

Симметрия задачи позволяет от трехмерного пространства перейти к плоскости. Следовательно, необходимо на плоскости построить функцию $\varphi = \varphi(x, y)$. Функция *meshgrid* формирует сетку узлов на плоскости в виде двумерных массивов x и y. Сетка ограничена прямоугольником, заданным векторами *-Lx:dLx:Lx* и *-Ly:dLy:Ly*. Команда *contour(x, y, Fi)*, рисует линии уровня для массива данных *Fi*, содержащего значения потенциала в узлах сетки. Текст программы приведен ниже.

```
% Визуализация поля электрического заряда
E0=8.854;
                 % электрическая постоянная, пФ/м
Q=100*8.854;
                 % заряд, пКл
K=Q/(4*pi*E0);
                 % размер прямоугольной области по х, м
Lx=1;
Ly=1;
                 % размер прямоугольной области по у, м
dLx=0.01;
dLy=0.01;
[x,y]=meshgrid(-Lx:dLx:Lx,-Ly:dLy:Ly);
Fi=K./sqrt(x.^2+y.^2);
figure('Color',[1 1 1]);
contour(x,y,Fi);
grid;
ylabel('\ity','fontsize',14);
xlabel('\itx','fontsize',14);
```


Рис. 1

Результат расчета и визуализации эквипотенциальных линий электростатического поля точечного заряда приведен на Рис. 1. Признать его удачным конечно нельзя, изолинии не дают представления о поле. В чем причина неудачи? Потенциал в точке нахождения точечного заряда не определен. Значения потенциала вблизи заряда неограниченно возрастает.

Однако возможности команды *contour* значительно шире. Определив вектор заданных значений линий уровня (LevelCon), тип, толщина и цвет которых определяются соответствующими параметрами, можно существенно улучшить результат. Текст изменений в программе приведен ниже.

LevelCon=[10 20 40 60];

```
figure('Color',[1 1 1]);
contour(x,y,Fi,'ShowText','on','LineWidth',2,'LineStyle','-','LineColor',[1 0
0], 'LevelList', LevelCon);
grid;
ylabel('\ity, M','fontsize',14);
xlabel('\itx, M', 'fontsize',14);
                                0.8
                                0.6
                                0.4
                                0.2
                                Π
                              ×.
                                -0.2
                                -0.4
                                -0.6
                                -0.8
                                -1 ⊾
-1
                                    -0.8
                                       -0.6
                                           -0.4
                                              -0.2
                                                      0.2
                                                         0.4
                                                            0.6
                                                                0.8
```


хм

Значительно улучшенный результат приведен на Рис. 2.

Визуализация поверхности возможно не только с помощью изолиний, но и цветным окрашиванием. Каждому диапазону значений функции ставится в соответствие определенный цвет. Расцветка поверхности командой *pcolor* существенно зависит от палитры цветов. В приведенном ниже примере она задается командой *colormap*. Выбрана предопределенная в *Matlab* радужная палитра *jet*. Команда *colorbar* добавляет к графику шкалу палитры. Перед визуализацией нормализуем потенциал. Значения, превышающие пороговое, ограничиваются им.

```
% ограничиваем значения потенциала
[N,M]=size(Fi);
for i=1:N*M
    if Fi(i)>70
        Fi(i)=70;
    end
end
figure('Color',[1 1 1]);
pcolor(x,y,Fi);
colormap(jet); % выбираем палитру
shading interp; % устанавливает раскраску каждой ячейки
colorbar; % добавляет к графику шкалу палитры
ylabel('\ity, M','fontsize',14);
xlabel('\itx, M','fontsize',14);
```

Результат такого представления электростатического поля точечного заряда приведен на Рис. 3.

Рис. 3

Наглядное представление о поверхностях дают сетчатые графики, использующие функциональную закраску ячеек. Для построения таких поверхностей используются команды класса *surf*. Текст программы и результат расчета приведен ниже.

Рис. 4

Приведенные примеры далеко не исчерпывают арсенал *Matlab* для визуализации поверхностей.

Перейдем к визуализации векторного представления электрического поля. Расчет проведем для проекций и модуля вектора напряженности поля точечного заряда

$$E_x = \frac{1}{4\pi\epsilon\epsilon_o} \frac{q}{\sqrt{x^2 + y^2}} x$$
, $E_y = \frac{1}{4\pi\epsilon\epsilon_o} \frac{q}{\sqrt{x^2 + y^2}} y$, $E = \sqrt{E_x^2 + E_y^2}$

Результат расчета приведен ниже. Визуализация каждой из этих скалярных функций не отличается от примеров приведенных выше.

```
% Визуализация поля электрического заряда
E0=8.854;
                 % электрическая постоянная, пФ/м
Q=8.854*100;
                 % заряд, пКл
K=Q/(4*pi*E0);
Lx=1;
                 % размер прямоугольной области по х, м
Ly=1;
                 % размер прямоугольной области по у, м
dLx=0.01;
dLy=0.01;
[x,y]=meshgrid(-Lx:dLx:Lx,-Ly:dLy:Ly);
Ex=K.*x./(x.^2+y.^2).^(3/2);
Ey=K.*y./(x.^2+y.^2).^(3/2);
E = sqrt(Ex.^{2}+Ey.^{2});
LevelCon=[5 10 20 50 100 500];
figure('Color',[1 1 1]);
contour(x,y,Ex,'ShowText','on','LineWidth',2,'LineStyle','-','LineColor',[1 0
0], 'LevelList', LevelCon);
ylabel('\ity, M','fontsize',14);
xlabel('\itx, M','fontsize',14);
axis ([ 0 1 -1 1 ]);
grid;
```


Рис. 5

На Рис. 5 показаны изолинии компоненты вектора напряженности *E*_x.

В арсенале *Matlab* существуют средства для представления векторных полей. Функция [px, py] = gradient(F, dx, dy) возвращает численные значения производных функции F в виде массивов px = dF/dx u py = dF/dy. Команда quiver(x, y, px, py) формирует и выводит на экран поле градиентов функции в виде стрелок для каждой пары элементов массивов x и y.

```
% Визуализация поля электрического заряда
E0=8.854; % электрическая постоянная, пФ/м
Q=100*8.854; % заряд, пКл
K=Q/(4*pi*E0);
Lx=1; % размер прямоугольной области по x, м
```

```
Lv=1;
                   % размер прямоугольной области по у, м
dLx=0.1;
dLv=0.1;
[x,y]=meshgrid(-Lx:dLx:Lx,-Ly:dLy:Ly);
Fi=K./sqrt(x.^2+y.^2);
% ограничиваем значения потенциала
[N,M]=size(Fi);
for i=1:N*M
   if Fi(i)>70
      Fi(i)=70;
   end
end
LevelCon=[10 20 40 60];
figure('Color',[1 1 1]);
contour(x,y,Fi,'ShowText','on','LineWidth',2,'LineStyle','-','LineColor',[1 0
0], 'LevelList', LevelCon);
grid;
ylabel('\ity, M','fontsize',14);
xlabel('\itx, M','fontsize',14);
[dx, dy] = gradient(-Fi, dLx, dLy);
hold on;
quiver( x,y,dx, dy,3);
                            0.8
                            0.8
                            0.4
                            0.2
                          Ν
                            ſ
                          Ľ
                           -0.2
                            -0.4
                            -0.E
                            -0.8
                                                        0.8
                               -0.8
                                  -0.6
                                      -0.4
                                         -0.2
                                               0.2
                                                  0.4
                                                     0.6
                                            х. м
```

Рис. 6

Совместное представление эквипотенциальных линий и векторов напряженности, а вектор напряженности есть взятый с обратным знаком градиент потенциала, приведено на Рис. 6.

Электрическое поле системы точечных зарядов

Следующий шаг по пути усложнения модели – система точечных зарядов. И для вектора напряженности, и для потенциала такой системы справедлив принцип суперпозиции.

Напряженность электростатического поля системы точечных зарядов равна векторной сумме напряженностей полей, которые создавал бы каждый из этих зарядов в отсутствии остальных.

$$\vec{E} = \sum_{i=1}^{N} \vec{E}_{i} , \quad \vec{E} = \frac{1}{4\pi\epsilon\epsilon_{o}} \sum_{i=1}^{N} \frac{q_{i}}{\left|\vec{R} - \vec{r}_{i}\right|^{3}} \left(\vec{R} - \vec{r}_{i}\right)$$

Потенциал электрического поля системы точечных зарядов равен алгебраической сумме потенциалов электрических полей, созданных каждым зарядом в отдельности.

$$\varphi = \sum_{i=1}^{N} \varphi_i \quad , \qquad \varphi = \frac{1}{4\pi\varepsilon\varepsilon_o} \sum_{i=1}^{N} \frac{q_i}{\left|\vec{R} - \vec{r_i}\right|}$$

Расчёт поля электрического диполя

Электрический диполь – идеализированная система, состоящая из точечных и равных по абсолютной величине положительного и отрицательного электрических зарядов. Диполь – электрически нейтрален, тем не менее он порождает электрическое поле.

Используя принцип суперпозиции и изложенные выше приемы визуализации, построим эквипотенциальные линии электростатического поля диполя.

```
% Визуализация поля диполя
E0=8.854;
                 % электрическая постоянная, пФ/м
Q=100*8.854;
                 🗞 заряд, пКл
K=Q/(4*pi*E0);
                 % размер прямоугольной области по х, м
Lx=1;
                 % размер прямоугольной области по у, м
Ly=1;
dLx=0.01;
dLy=0.01;
L=0.2;
                  % плечо диполя
[x,y]=meshgrid(-Lx:dLx:Lx,-Ly:dLy:Ly);
Fi=K./sqrt((x+L/2).^2+y.^2)-K./sqrt((x-L/2).^2+y.^2);
LevelCon=[-1 -2 -5 -10 1 2 5 10];
figure('Color',[1 1 1]);
contour(x,y,Fi,'ShowText','on','LineWidth',2,'LineStyle','-','LineColor',[1 0
0], 'LevelList', LevelCon);
grid;
ylabel('\ity, M','fontsize',14);
xlabel('\itx, M','fontsize',14);
```


Рис. 7

Точечные заряды расположены на оси абсцисс в точках ±0.2. Изолинии приведены на Рис. 7. Сравнивая с полем точечного заряда, замечаем, что поле диполя уменьшается при удалении от него гораздо быстрее.

% ограничиваем значения потенциала

```
[N,M]=size(Fi);
for i=1:N*M
   if Fi(i)>20
      Fi(i)=20;
   end
   if Fi(i)<-20
      Fi(i) = -20;
   end
end
figure('Color',[1 1 1]);
surfc(x,y,Fi);
colormap(jet); % выбираем палитру
shading interp; % устанавливает раскраску каждой ячейки
colorbar;
                % добавляет к графику шкалу палитры
ylabel('\ity, M','fontsize',14);
xlabel('\itx, M','fontsize',14);
```


Рис. 8

На Рис. 8 показан потенциал электростатического поля диполя в виде окрашенной поверхности.

Силовые линии системы точечных зарядов

Наиболее полно векторное поле характеризует семейство силовых линий. Построим процедуру построения силовых линий диполя.

Первоначально рассмотрим точечный заряд. Из определения силовой линии следует, что касательная к ней в любой точке составляет с осью абсцисс угол

$$tg\alpha = \frac{E_y}{E_x}$$
,

но для кривой на плоскости справедливо

$$tg\alpha = \frac{dy}{dx} = f(x, y) \; .$$

Учтя выражения для проекций вектора напряженности поля точечного заряда, получим дифференциальное уравнение

$$\frac{dy}{dx} = \frac{y}{x}$$

Аналитическое решение очевидно y = kx. То есть, семейство силовых линий – семейство радиальных прямых.

Вместе с тем решение дифференциального уравнения можно найти численно, используя солверы *Matlab*, что, конечно, потребует задания начальных условий. Такой подход станет актуальным, когда аналитические решения невозможны.

Видно, что не любую силовую линию можно построить таким способом. Линию, совпадающую с осью ординат, так получить невозможно. Иными словами, там, где $E_x=0$, решение невозможно. В этом случае следует перейти к решению уравнения

$$\frac{dx}{dy} = \frac{x}{y}$$

Рассмотрим два заряда q_1 и q_2 , находящиеся на оси абсцисс в точках $\pm a$, Рис. 9.

Запишем суммарное поле этих зарядов в точке с координатами (x, y)

$$\vec{E} = \vec{E}_1 + \vec{E}_2 \quad .$$

Если $r_1 = \sqrt{(x+a)^2 + y^2}$, $\sin \alpha_1 = y/r_1$, $\cos \alpha_1 = (x+a)/r_1$, $r_2 = \sqrt{(x-a)^2 + y^2}$, $\sin \alpha_2 = y/r_2$, $\cos \alpha_2 = (x-a)/r_2$, то $E_x = E_{1x} \cos \alpha_1 + E_{2x} \cos \alpha_2$, $E_y = E_{1y} \sin \alpha_1 + E_{2y} \sin \alpha_2$.

Тогда в любой точке справедливо

$$tg\alpha = \frac{E_y}{E_x} = \frac{q_1 y/r_1^3 + q_2 y/r_2^3}{q_1(x+a)/r_1^3 + q_2(x-a)/r_2^3}, \quad tg\alpha = \frac{dy}{dx} = f(x, y)$$

Силовая линия – это кривая на плоскости вида y = y(x). Начальные условия можно задать на границах области, для которой рассчитываются силовые линии внутри этой области и вблизи точечных зарядов.

Построив малую окружность радиуса ρ вблизи точечного заряда, расположенного в точке с координатами (x_0, y_0) , можно быть уверенным, что линии напряженности на этой окружности определяются лишь этим зарядом, а именно расстоянием до него. Тогда, в точках расположенных равномерно на этой окружности с координатами

$$x_i = x_0 + \rho \cos \beta_i$$
, $y_i = y_0 + \rho \sin \beta_i$,

есть начальные условия для силовой линии.

Текст программы, реализующий описанный алгоритм приведен ниже.

```
function ForceLines
global XY Charge_Q Charge_X Charge_Y;
Charge_X=[-5 5];
Charge_Y=[0 0];
Charge_Q=[3 - 3];
N_Charge=size(Charge_Q,2);
R_Charge=0.05;
RectangleBase=[-20 20 -20 20];
figure('Color',[1 1 1]);
plot (0,0);
axis(RectangleBase);
grid;
hold on;
% начальные условия заданы вблизи заряда
XY=1;
iCur=1;
pColor='m';
X0=Charge_X(iCur);
XN= Charge_X(2);
dx = (XN - X0) / 100;
for i=[-90 -70 -45 0 45 70 90]
    fi=i*pi/180;
    X0=Charge_X(iCur)+R_Charge*cos(fi);
    Y0=Charge_Y(iCur)+R_Charge*sin(fi);
    [X,Y]=ode45(@dipole,[X0:dX:XN],Y0);
    h1=plot(X,Y,pColor);
end
XY=1;
iCur=2;
pColor='g';
X0=Charge_X(iCur);
XN = 20;
dX = (XN - X0) / 100;
for i=[-40 -30 0 30 40]
    fi=i*pi/180;
```

```
X0=Charge_X(iCur)+R_Charge*cos(fi);
    Y0=Charge_Y(iCur)+R_Charge*sin(fi);
    [X,Y]=ode45(@dipole,[X0:dX:XN],Y0);
    h2=plot(X,Y,pColor);
end
XY=1;
iCur=1;
pColor='g--';
X0=Charge_X(iCur);
XN = -20;
dX = (XN - X0) / 100;
for i=[-40 -30 0 30 40]
    fi=i*pi/180;
    X0=Charge_X(iCur)+R_Charge*cos(fi);
    Y0=Charge_Y(iCur)+R_Charge*sin(fi);
    [X,Y]=ode45(@dipole,[X0:dX:XN],Y0);
    h3=plot(X,Y,pColor);
end
% рисуем систему зарядов
for iCur=1:N_Charge
     h=plot (Charge_X(iCur),Charge_Y(iCur));
     pColor='b';
     if Charge_Q (iCur) > 0
       pColor='r';
     end
     set(h,'LineStyle', 'none','Marker', 'o', 'MarkerSize', 8, 'Color',
pColor, 'MarkerFaceColor', pColor );
end;
ylabel('\ity','fontsize',14);
xlabel('\itx','fontsize',14);
end
function z=dipole(x,y)
global XY Charge_Q Charge_X Charge_Y;
Q1=Charge_Q(1);
Q2=Charge_Q(2);
a=(Charge_X(2)-Charge_X(1))/2;
if XY==1
r13=((x+a).^{2+y}.^{2}).^{(3/2)};
r23=((x-a).^{2+y}.^{2}).^{(3/2)};
z1=Q1*y./r13+Q2*y./r23;
z2=Q1*(x+a)./r13+Q2*(x-a)./r23;
end
if XY == 2
r13=((y-a).^2+x.^2).^(3/2);
r23=((y+a).^2+x.^2).^(3/2);
z2=Q1*x./r13+Q2*x./r23;
z1=Q1*(y-a)./r13+Q2*(y+a)./r23;
z = z2./z1;
end
z = z1./z2;
end
```


Рис. 10

Наряду с представленным в листинге алгоритмом определения начальных условий вблизи зарядов, на Рис. 10 показаны результаты, полученные при определении начальных условий как на границе области так и внутри ее.

Опыты Резерфорда по рассеянию а-частиц

Первая модель атома принадлежит Томсону. Томсон полагал, что атом представляет собой сферу с радиусом ~10⁻¹⁰ м, равномерно заполненную положительно заряженным веществом. Внутри сферы находятся отрицательно заряженные электроны, которые можно считать точечными зарядами. Суммарный положительный и отрицательный заряды совпадают, и атом остается электрически нейтральным.

Ленард Ф., экспериментируя с пучком электронов, установил, что атом практически прозрачен для пронизывающих его частиц.

Резерфорд Э. с сотрудниками проводил опыты по изучению строения атома, регистрируя рассеяние быстрых α -частиц в веществе. Возникающие при радиоактивном распаде дважды ионизированные атомы гелия (α -частицы) обладают высокой монохроматичностью. Скорости α -частиц при определенном виде распада практически неизменны. В опытах Резерфорда скорость составляла ~ $10^7 \ m/c$. α -частица состоит из двух протонов и двух нейтронов, и ее масса значительно превышает массу электрона.

Траектории высокоскоростных и тяжелых α-частиц при столкновениях с электронами вещества не должны испытывать значительных отклонений. Рассеяние таких частиц позволяет судить о распределении положительных зарядов в атоме.

Рис. 11

Опыты Резерфорда схематично представлены на Рис. 11. Испущенные источником И α - частицы формировались в узкий пучок и направлялись на тонкую (толщиной ~1 мкм) металлическую фольгу Ф. После прохождения фольги частицы визуально регистрировались на флуоресцирующем экране. При попадании на экран α-частицы наблюдалась вспышка света.

Оказалось, что подавляющее число α - частиц отклонялось на небольшие ~1-3⁰ углы. Отдельные частицы испытывали значительные отклонения, достигавшие 150⁰. На угол, превышающий 90⁰, в среднем отклонялась только одна из 8000 частиц.

Резерфорд сделал вывод, что отклонение на большой угол возможно только вследствие однократного взаимодействия α-частицы и положительного заряда, обладающего большой массой и сосредоточенного в ограниченной области пространства.

Величины рассеивающих положительных зарядов, измеренные в опытах с платиновой, серебряной и медной фольгой, соответствовали порядковому номеру этих элементов в периодической таблице. Количественные результаты опытов свидетельствовали, что положительный заряд сосредоточен в области пространства, не превышающей размерами 10⁻¹⁴ м.

Основываясь на результатах экспериментов, Резерфорд предложил ядерную модель атома.

Кулоновское отталкивание положительно заряженной α-частицы и положительно заряженного ядра искривляет ее траекторию. Поскольку ядро золота почти в 50 раз массивней α-частицы, будем полагать, что в опыте оно остается неподвижным. Запишем силу кулоновского взаимодействия

$$\vec{F} = \frac{1}{4\pi\varepsilon_o} \frac{qQ}{r^3} \vec{r}$$

где Q – заряд ядра, q – заряд α -частицы, r – расстояние между ними.

Используя второй закон Ньютона, запишем уравнения движения α-частицы

$$m\frac{dV_x}{dt} = \frac{1}{4\pi\varepsilon_o} \frac{qQ}{\left(x^2 + y^2\right)^{3/2}} x$$
$$m\frac{dV_y}{dt} = \frac{1}{4\pi\varepsilon_o} \frac{qQ}{\left(x^2 + y^2\right)^{3/2}} y$$

На неподвижное ядро издалека налетает заряженная частица. Декартова система координат ориентирована таким образом, что в начальный момент времени скорость частицы направлена по оси абсцисс. Ядро отстоит от линии скорости на расстояние *b*, оно называется прицельным, Рис. 12. Запишем начальные условия такой задачи

 $x(0) = x_0$, y(0) = b, $V_x(0) = V_0$, $V_y(0) = 0$.

Представим уравнения движения в безразмерном виде. Заряды будем измерять в элементарных зарядах e, массу – в массах протона M, скорость – в скоростях света c. В качестве масштаба времени и расстояния будем использовать параметры T и a, связанные соотношением

$$a = cT$$
.

Тогда

$$\tilde{q} = q/e$$
, $\tilde{Q} = Q/e$, $\mu = m/M$, $\tau = t/T$,
 $z_1 = x/a$, $z_2 = V_x/c$, $z_3 = y/a$, $z_4 = V_y/c$.

Замены переменных сводят уравнения движения к системе дифференциальных уравнении, соответствующих виду Коши,

$$\frac{dz_1}{d\tau} = z_2$$

$$\frac{dz_2}{d\tau} = \frac{Kz_1}{\left(z_1^2 + z_3^2\right)^{3/2}}$$

$$\frac{dz_3}{d\tau} = z_4$$

$$\frac{dz_4}{d\tau} = \frac{Kz_3}{\left(z_1^2 + z_3^2\right)^{3/2}}$$

где $K = \frac{e^2}{4\pi\varepsilon_0 c^2 Ma} \frac{\tilde{q}\tilde{Q}}{\mu}$.

Подставив константы, получаем, что

$$K \approx \frac{1.53 \cdot 10^{-18}}{a} \frac{\tilde{q}\tilde{Q}}{\mu}$$

Если выбрать параметра $a = 10^{-18} M$, при прочих значениях $\tilde{q} = 2$, $\tilde{Q} = 79$, $\mu = 4$, то коэффициент *K*~100. Такой выбор масштабирующих множителей делает систему более приспособленной для численных расчетов.

Размер атома золота ~ $10^{-14} M$, в выбранном масштабе это $10^4 a$. Начальная координата в расчете должна удовлетворять условию $x(0) >> 10^4 a$, а прицельное расстояние $10^4 a$. Скорость a-частицы в опытах составляла 10^7 м/с.

```
% опыты Резерфорда
E0=8.854/10^12;
                       % электрическая постоянная, Ф/м
e=1.60217662/10^19;
                    % заряд электрона
                    % скорость света
% масса протона
c=299792458;
M=1.6726219/10^27;
K=e^2/(4*pi*E0*c^2*M);
K=K*10^18*2*79/4;
X0 = -10^{6};
Y0=2*10^4;
XP0=0.1;
YP0=0;
T0 = 0;
TN=2*10^7;
dT=TN/2000;
Alfa=@(t,z) [z(2); K*z(1)./(z(1).^2+z(3).^2).^(3/2); z(4);
K*z(3)./(z(1).^2+z(3).^2).^(3/2)]; % правая часть задачи Коши
figure('Color',[1 1 1]);
Cg= { 'b', 'c', 'g', 'm' };
hL1=plot(0,0,'or'); grid; % траектория
set(hL1(1), 'Marker', 'o', 'MarkerSize', 8, 'Color', 'r', 'MarkerFaceColor',
'r' );
Y00=10^6;
hold on;
Ncolor=1;
for i=[0.1 1 5 10]
[T,Y]=ode45(Alfa,[T0:dT:TN],[X0, XP0, Y0*i, YP0]); % решение системы ОДУ
```

```
plot(Y(:,1)/Y00,Y(:,3)/Y00,Cg{Ncolor}, 'LineWidth', 2);
Ncolor=Ncolor+1;
end
legend ('ядро','0.1','1','5','10',-1);
axis ([-1 1 -.1 .6 ]);
ylabel('\ity','fontsize',14);
xlabel('\itx','fontsize',14);
```


Результаты расчетов для разных значений прицельного параметра приведены на Рис. 13. Все линейные размеры нормированы на $10^4 a$. Подавляющая часть α -частицы испытывает лишь незначительное отклонение от прямолинейной траектории. Фактически лишь лобовое столкновение, когда прицельный параметр $<10^3 a$, способно развернуть вектор скорости частицы на углы, превышающие 90^0 .