Моделирование движения в гравитационном поле Земли

Опыты Галилея

Основоположник экспериментальной физики Галилео Галилея, в своих научных построениях опирался на результаты тщательно спланированных экспериментов. Согласно записям одного из его учеников, сбросив два шара различной массы с падающей башни в Пизе, Рис. 1, Галилей установил, что время падения не зависит от массы шара. Несмотря на то, что достоверность сведений об этих опытах подвергается сомнению историками науки, данное утверждение легло в основу новой механики.

Рис. 1 Пизанская башня

Рис. 2 Система координат

В терминах современной физики движения материальной точки массой *m* в поле силы тяжести определяется вторым законом Ньютона

$$ma = -mg$$
,

где a – ускорение материальной точки, а g – ускорение свободного падения.

Определим систему координат, как показано на Рис. 2, тогда движение шаров, сброшенных Галилеем, описывается дифференциальным уравнением второго порядка

$$y'' = -g$$
, $y(0) = H$, $y'(0) = 0$.

Начальные условия выбраны в соответствие с экспериментом.

Заменой переменной сведем дифференциальное уравнение второго порядка к обыкновенному дифференциальному уравнению (ОДУ) первого порядка, разрешённое относительно производной. Пусть

$$z = \begin{pmatrix} y \\ V_y \end{pmatrix}$$
, тогда $\begin{cases} z_1' = z_2 & , z_1(0) = H \\ z_2' = -g & , z_2(0) = 0 \end{cases}$

А.Д. Заикин, ПиТФ, НГТУ

Численное решение данной системы построим, используя солвер (решатель) ode45, использующий одношаговый явный метод Рунге-Кутты 4-го и 5-го порядка. Для этих целей создадим файл m – сценария, текст которого приводится ниже

```
q0=9.81;
                 % ускорение свободного падения
T0=0;
                 % время начала движения
TN=10;
                % время окончания движения
dT=0.05;
                % шаг по времени
Y0=300;
                % начальная координата
YP0=0;
                 % начальная скорость
Shot1=@(t,y) [y(2); -g0]; % правая часть задачи Коши
[T,Y]=ode45(Shot1,[T0:dT:TN],[Y0, YP0]); % решение системы ОДУ
figure('Color', [1 1 1]);
hL1=plot(T,Y(:,1)); grid;
                           % зависимость координаты от времени
ylabel('\ity, M', 'fontsize',14);
xlabel('\itt, c', 'fontsize',14);
set(hL1(1), 'LineWidth', 2, 'Color', 'b');
figure ('Color', [1 1 1]);
hL2=plot(T,Y(:,2)); grid; % зависимость скорости от времени
ylabel('\itV, M/c', 'fontsize',14);
xlabel('\itt, c','fontsize',14);
set(hL2(1), 'LineWidth', 2, 'Color', 'q');
```

В результате работы программы получаем два приведенных ниже графика.

Как и следовало ожидать, высота изменяется по параболическому закону, а скорость линейно нарастает со временем.

Итерационный метод решения ОДУ не предполагает прекращения расчетов при падении материальной точки на поверхность земли, что соответствует координате y=0. Решение ищется на всем заданном интервале времен. Поэтому все, что находится ниже поверхности, при y<0, не имеет физического смысла.

Баллистическая задача

Движение метательных снарядов, как то: стрел, пуль, снарядов и т.п., всегда представляло практический интерес. Как движется тело, брошенное в воздух под углом к

горизонту? На этот вопрос искали ответ со времен Аристотеля. Сегодня наука о движении метательного снаряда называется баллистикой, а траектория, по которой движется снаряд, баллистической. Галилей установил, что эта траектория параболическая.

Пусть материальной точке сообщили скорость, направленную под углом к горизонту. Поместим начало декартовой системы координат в точке, откуда движение начинается, Рис. 5. Оси направим вертикально и горизонтально.

Рис. 5

Сложное криволинейное движение точки есть совокупность двух независимых движений: равномерного движения по горизонтали и равнопеременного движения по вертикали под воздействием силы тяжести. Равномерность горизонтального движения есть следствие первого закона Ньютона и предположения об отсутствии сил, действующих вдоль горизонтальной оси.

Тогда, силы запишем в виде

$$F_x = 0$$
 , $F_y = -mg$,

начальные скорости горизонтального и вертикального движения определим как проекции начальной скорости на оси, Рис. 5,

$$V_{0x} = V_0 \cos \alpha$$
, $V_{0y} = V_0 \sin \alpha$,

а начальные координаты

$$x(0) = y(0) = 0 \quad .$$

Движение материальной точки описывается системой дифференциальных уравнений второго порядка.

$$\begin{cases} x'' = 0\\ y'' = -g \end{cases}.$$

Сделав замену переменных, понизим порядок дифференциальных уравнений, сведя их к задаче Коши. Запишем уравнения и начальные условия

$$z = \begin{pmatrix} x \\ y \\ V_x \\ V_y \end{pmatrix}, \quad \begin{cases} z_1' = z_3 \\ z_2' = z_4 \\ z_3' = 0 \\ z_4' = -g \end{cases}, \quad \begin{cases} z_1(0) = 0 \\ z_2(0) = 0 \\ z_3(0) = V_0 \cos \alpha \\ z_4(0) = V_0 \sin \alpha \end{cases}$$

Расчеты проведем, используя характеристики реального орудия. В качестве такового используем штурмовое орудие М1910, образца 1910 г., дальность стрельбы которого при использовании выстрела 76.2×191R составляла 8.6 км. Тактико-технические характеристики орудия: калибр – 76.2 мм, масса – 6.2 кг, начальная скорость снаряда – 387 м/с. Ствол орудия направим по углом 45⁰, что соответствует максимальной дальности полета.

Соответствующий задаче файл m – сценария, приводится ниже

```
q0=9.81;
                % ускорение свободного падения
X0=0;
                % начальная координата
Y0=0;
                % начальная координата
V00=387;
               % дульная скорость
А00=рі/4; % угол прицеливания
XP0=V00*cos(A00);
                    % горизонтальная начальная скорость
YP0=V00*sin(A00);
                           % вертикальная начальная скорость
T0=0;
                % время начала движения
TN=56;
                % время окончания движения
dT=0.01;
              % шаг по времени
Shot2=@(t,z) [z(3); z(4); 0; -q0]; % правая часть задачи Коши
[T,Z]=ode45(Shot2,[T0:dT:TN],[X0 Y0 XP0 YP0]); % решение системы ОДУ
figure('Color', [1 1 1]);
hL1=plot(T,Z(:,1),T,Z(:,2)); grid; % зависимость координаты от времени
ylabel('\ity, M', 'fontsize', 14);
xlabel('\itt, c', 'fontsize', 14);
set(hL1(1), 'LineWidth', 2, 'Color', 'b');
set(hL1(2), 'LineWidth', 2, 'Color', 'g');
figure ('Color', [1 1 1]);
hL2=plot(T,Z(:,3),T,Z(:,4)); grid; % зависимость скорости от времени
ylabel('\itV, M/c', 'fontsize',14);
xlabel('\itt, c','fontsize',14);
set(hL2(1), 'LineWidth', 2, 'Color', 'b');
set(hL2(2), 'LineWidth', 2, 'Color', 'g');
```

На Рис. 6 приведены зависимости от времени положения тела и его скорости относительно вертикальной (линии зеленого цвета) и горизонтальной (линии синего цвета) оси.

Рис. 6 Движение снаряда вдоль осей координат

Из графиков следует, что время полета снаряда составляет ~55 с. Максимальная высота, на которую поднимается снаряд в середине полета, составляет ~4000 м. Расчетная дальность полета ~15000 м, что существенно превышает заявленную в ТТХ дальность 8600 м.

Причина такого рассогласования очевидна, снаряд движется не в безвоздушном пространстве. Воздух атмосферы оказывает тормозящее действие на снаряд.

Баллистическая задача с учетом силы трения

Реальные тела, движущиеся в жидких и газовых средах, испытывают со стороны среды сопротивление. Если скорость движения мала, то сила вязкого трения пропорциональна скорости и направлена против нее. Стокс установил, что для сферы радиуса R, движущейся в жидкости с коэффициентом динамической вязкости μ , справедливо

$$\vec{F}_D = -\beta \vec{V}$$
, $\beta = 6\pi\mu R$.

При больших скоростях сила лобового сопротивления направлена против скорости движения, её величина пропорциональна квадрату скорости, характерной площади тела S и плотности среды ρ

$$\vec{F}_D = -\beta \left| \vec{V} \right| \vec{V}$$
, $\beta = CS\rho/2$,

где С – коэффициент лобового сопротивления, определяемый формой тела.

Величина коэффициента лобового сопротивления для ряда тел правильной формы приведена в таблице.

Диск	Сфера	Полусфера	Полусфера	Каплевидное	Каплевидное
\Rightarrow	$\Rightarrow\bigcirc$	$\Rightarrow \bigcirc$	\Rightarrow	\Rightarrow	\Rightarrow
1.11	0.4	1.33	0.55	0.1	0.045

Запишем второй закон Ньютона с учетом силы трения

$$m\vec{a} = m\vec{g} + \vec{F}_D$$
 .

Движение артиллерийского снаряда никак нельзя считать медленным, поэтому используем квадратичную зависимости силы сопротивления от скорости. Тогда, представляя движение снаряда как совокупность двух простых, запишем дифференциальные уравнения этих движений

$$x'' = -\gamma x' \sqrt{(x')^2 + (y')^2}$$
, $y'' = -g - \gamma y' \sqrt{(x')^2 + (y')^2}$, $\gamma = \beta/m = CS\rho/2m$.

А.Д. Заикин, ПиТФ, НГТУ

Замена переменных дает

$$z = \begin{pmatrix} x \\ y \\ V_x \\ V_y \end{pmatrix}, \begin{cases} z_1' = z_3 \\ z_2' = z_4 \\ z_3' = -\gamma z_3 \sqrt{z_3^2 + z_4^2} \\ z_4' = -g - \gamma z_4 \sqrt{z_3^2 + z_4^2} \end{cases}, \begin{cases} z_1(0) = 0 \\ z_2(0) = 0 \\ z_3(0) = V_0 \cos \alpha \\ z_4(0) = V_0 \sin \alpha \end{cases}$$

Для расчетов будем использовать следующие значения: плотность воздуха на уровне моря – 1.225 кг/м³, масса снаряда – 6.2 кг, характерная площадь снаряда – площадь окружности диметром 76.2 мм.

Каплевидное тело, движущееся острием вперед, наиболее близко по форме к артиллерийскому снаряду. Наличие у снаряда продолговатой задней части в форме цилиндра приведет к некоторому увеличению коэффициента лобового сопротивления, будем полагать его равным 0.15.

Листинг файла т – сценария, приводится ниже.

Рис. 7 Дальность полета снаряда

Изменение формы снаряда существенно меняет дальность полета. Первый график на Дальность полета снарядаРис. 7 построен для снаряда с коэффициентом лобового сопротивления 0.05, второй – 1.1. Дальность полета изменяется от 12 до 3 км. Третий график построен для снаряда с коэффициентом лобового сопротивления 0.15. Расчетная дальность полета ~ 8.5 км соответствует заявленной в ТТХ.

Пушка кайзера Вильгельма

В 1918 г., в ходе первой мировой войны германские войска обстреливали Париж с расстояния 120 км. Создание уникального орудия, способного посылать снаряд на такое расстояние, сложная научная и инженерная задача. Так называемая парижская пушка кайзера Вильгельма, Рис. 8, имела следующие характеристики: калибр – 210 мм, масса снаряда – 120 кг, начальная скорость снаряда – 1600 м/с. Ствол имел длину 28 м и оснащался дополнительным 6-метровым гладкоствольным удлинением, устанавливаемым на его выходном конце.

Рис. 8 Парижская пушка

Рассчитаем дальность полета снаряда артиллерийской системы с такими характеристиками. Для этого достаточно изменить в предыдущей программе параметры штурмового орудия М1910 на параметры парижской пушки. Их всего три:

Рис. 9 Полет снаряда парижской пушки

На Рис. 9 приведены зависимость от времени горизонтальной и вертикальной координаты снаряда парижской пушки. Как видно из графика время полета ~130 с, дальность ~53 км, а максимальная высота, на которую поднимается снаряд, ~20 км. Результат, конечно, значительный, но совершенно не соответствующий реальным характеристикам пушки.

Дальность выстрела пушки кайзера Вильгельма составляла 130 км, а максимальная высота траектории – до 45 км. Такая разница свидетельствует о том, что используемая в расчетах модель не адекватна реальному полету снаряда. Попробуем разобраться, в чем тут дело.

Обладая высокой дульной скоростью, снаряд поднимается на значительную высоту, составляющую десятки километров. Фактически он оказывался в стратосфере, где давление и плотность воздуха существенно меньше, чем на уровне моря. Движение снаряда в стратосфере было одним из основных факторов уникальной дальнобойности орудия, благодаря значительному уменьшению сопротивления воздуха.

Атмосфера Земли

Изменения параметров атмосферы Земли с ростом высоты описывается в нескольких документах. Рассмотрим некоторые из них, содержащие подробные таблицы параметров, позволяющие построить модель атмосферы.

ГОСТ 4401-81. Атмосфера стандартная. Параметры (с Изменением N 1).

Настоящий стандарт устанавливает числовые значения основных параметров атмосферы для высот от минус 2000 до 1200000 м. Данные устанавливают средние значения параметров атмосферы для широты 45°32'33", соответствующие среднему уровню солнечной активности.

<u>ГОСТ Р 25645.166-2004. Атмосфера Земли верхняя. Модель плотности для</u> <u>баллистического обеспечения полетов искусственных спутников Земли.</u>

Настоящий стандарт устанавливает модель плотности, методику расчета и значения параметров плотности атмосферы Земли в диапазоне высот 120-1500 км для различных уровней солнечной активности при известных дате, времени и координатах точки пространства. Стандарт предназначен для баллистического обеспечения полетов искусственных спутников Земли и приведения результатов расчетов к одинаковым условиям.

<u>Международная стандартная атмосфера</u> – (сокр. МСА, англ. ISA) условное вертикальное распределение температуры, давления и плотности воздуха в атмосфере Земли принятое Международной организацией по стандартизации, ИСО (International Organization for Standardization, ISO).

Рис. 10 Температура атмосферы Земли

Земная атмосфера характеризуется четко выраженной слоистостью. На Рис. **10** показано изменение температуры с высотой. Слои атмосферы, определяемые вертикальным распределением температуры, подразделяются на тропосферу, стратосферу, мезосферу, термосферу и экзосферу.

Изменение давления земной атмосферы обусловлено тем, что находящиеся в поле силы тяжести вышележащие слои давят на нижележащие. В предположении о том, что атмосфера изотермична, построена барометрическая формула, определяющая экспоненциальное уменьшение давления и плотности с высотой

$$\rho = \rho_0 e^{-\alpha y} , \quad \alpha = \frac{\mu g}{RT} , \quad T = const ,$$

где µ=0.02896 кг/моль – молярная масса воздуха, *R*=8.3144598 Дж/(моль·К) – газовая постоянная. В полулогарифмических осях барометрическая формула сводится к линейной функции

$$\ln \rho / \rho_0 = -\alpha y$$
 .

До высоты 94 км давление, плотность и температура земной атмосферы удовлетворяют уравнению состояния идеального газа

$$P = \frac{R}{\mu} \rho T \; \; .$$

Рассмотрим параметры атмосферы на высотах, не превышающих 50 км. Выберем из документа ГОСТ 4401-81 массив из 19 отсчетов, содержащий высоту, температуру, давлений и плотность. Построим график температуры, Рис. 11, и аппроксимируем набор этих значений кубическим полиномом. График плотности от высоты построим в полулогарифмических осях, Рис. 12. Соответствующий листинг m – сценария приведен ниже.

```
% ГОСТ 4401-81. Атмосфера Земли.
8
    Высота, м
H4401=[0 50 100 200 300 500 1000 2000 3000 4000 5000 8000 10000 12000 15000
20000 30000 40000 50000];
  Температура, К
T4401=[288.15 287.88 287.50 286.85 286.20 284.90 281.65 275.15 268.66 262.17
255.77 236.22 223.25 216.65 216.65 216.65 226.51 250.35 270.65];
  Давление, Па
P4401=[101325.00 100726.00 100129.00 98945.40 97772.70 95461.30 89876.30
79501.40 70121.20 61660.40 54048.30 35651.60 26499.90 19399.40 12111.80
5529.29 1197.03 287.14 79.78];
  Плотность, кг/м3
D4401=[1.225000 1.219130 1.213280 1.201650 1.190110 1.167270 1.111660
1.006550 0.909254 0.819347 0.736429 0.525786 0.413510 0.311937 0.194755
0.088910 0.018410 0.003996 0.0010271;
% аппроксимация полиномом зависимости температуры от высоты
p3 = polyfit(H4401, T4401, 3)
hh = linspace(0, 50000, 100);
Tt3 = polyval(p3, hh);
figure('Color', [1 1 1]);
hL1=plot (H4401,T4401,'ro',hh,Tt3,'g'); grid on;
xlabel('\itH, M','fontsize',14);
ylabel('\itT, K','fontsize',14);
% аппроксимация полиномом зависимости плотности от высоты
p3 = polyfit(H4401, log(D4401),2);
hh = linspace(0, 50000, 100);
Dd3 = polyval(p3, hh);
figure('Color',[1 1 1]);
semilogy (H4401, D4401, 's', hh, exp(Dd3), 'r'); grid on;
xlabel('\itH, M','fontsize',14);
ylabel('{\rho}, KT/M^3', 'fontsize',14);
           270
           260
                                               10
                                             kr/m<sup>3</sup>
           250
                                               10
           240
           230
                                                    ......
           220
           210
                       НM
```


Рис. 12

Если высоту измерять в метрах, а температуру в градусах Кельвина, то

 $T = c_3 y^3 + c_2 y^2 + c_1 y + c_0 ,$

коэффициенты кубического полинома представлены в следующей таблице

<i>C</i> ₃	-2.868791904657885e-012
<i>c</i> ₂	3.160005910282888e-007
c_1	-9.013956410531734e-003
c_0	2.897296920091793e+002

Аппроксимацию плотности от высоты представим в виде

$$\ln \rho / \rho_0 = c_3 y^3 + c_2 y^2 + c_1 y + c_0 \quad ,$$

и сравним с барометрической формулой, полагая с соответствии с ГОСТ 4401-81, что на уровне моря температура и плотность равны 288.15*K* и 1.225 $\kappa c/m^3$.

```
% аппроксимация полиномом и барометрическая формула
g0=9.80665; % ускорение свободного падения
Mm=0.02896; % молярная масса воздуха
Rg=8.3144598; % газовая постоянная
T=288.15; % температура на уровне моря
D4401_log=log(D4401/D4401(1));
p3 = polyfit(H4401, D4401_log,3)
Dd4 = polyval(p3, hh);
figure('Color',[1 1 1]);
plot (H4401,D4401_log,'or',hh,Dd4,'b',hh,-hh.*(Mm*g0/(Rg*T)),'g'); grid on;
xlabel('\itH, M','fontsize',14);
ylabel('{\itln({\rho/\rho_0}})','fontsize',14);
```

Результат выполнения приведенного выше сценария представлен на Рис. 13.

Рис. 13

Как видим, до высот 15 км барометрическая формула вполне удовлетворительно описывает состояние атмосферы. В системе СИ коэффициенты кубического полинома имеют следующие значения

C3	3.244009619859655e-014
c_2	-2.684468432638904e-009
c_1	-8.831754661425263e-005
c_0	-1.590482745071122e-003

Для расчета параметров стандартной атмосферы вплоть до высоты 50 км построена первичная функция *EarthAtmosphere50*. Входной параметр flag определяет метод расчета – либо барометрическая функция, либо полиномиальная интерполяция. Выходные параметры – массив плотности или температуры на заданных высотах.

```
function z=EarthAtmosphere50 (flag,y)
% pacver параметров стандартной атмосферы до высоты 50 км
g0=9.80665; % ускорение свободного падения
Mm=0.02896; % молярная масса воздуха
Rg=8.3144598; % газовая постоянная
T0=288.15; % температура на уровне моря
ro_air_0=1.225; % плотность воздуха на уровне моря, кг/м3
switch flag
case 0 % pacver плотности по барометрической формуле
z= ro_air_0.*exp(-y.*(Mm*g0/(Rg*T0)));
case 1 % аппроксимация плотности воздуха полиномом
z= ro_air_0*exp(3.244009619859655e-014*y.^3-
2.684468432638904e-009*y.^2-8.831754661425263e-005*y-1.590482745071122e-003);
case 2 % аппроксимация температуры воздуха полиномом
z= -2.868791904657885e-012*y.^3+3.160005910282888e-007*y.^2-
9.013956410531734e-003*y+2.897296920091793e+002;
end
end
```

Используем построенную функцию для более точного моделирования движения снаряда в атмосфере.

Сверхдальнобойная пушка кайзера Вильгельма

Изменения, касающиеся свойств стандартной атмосферы, которые необходимо внести в m – сценарий расчета дальности полета снаряда парижской пушки не очень значительны. Плотность воздуха, а, следовательно, и коэффициент γ , входящий в правую часть системы ОДУ, будет теперь не константой, а функцией высоты. Тем не менее, приведем листинг полностью

```
g0=9.81;
                    % ускорение свободного падения, м/с2
gu=9.81; % ускорение свооодно
Ms=120; % масса снаряда, кг
Ds=210 % калибр. мм
Ds=210
                   % калибр, мм
V00=1600; % дульная скорость, м/с
Cx=0.15; % коэффициент лобового сопротивления
Ss=pi*(Ds/1000)^2/4; % характерная площадь снаряда
ХО=О; % начальная координата
Y0=0;
                   % начальная координата
А00=рі/4; % угол прицеливания
XP0=V00*cos(A00); % горизонтальная начальная скорость
YPO=V00*sin(A00); % вертикальная начальная скорость
T0=0;
                   % время начала движения
TN=180; % время окончания
dT=0.01; % шаг по времени
                   % время окончания движения
Gamma=@(y) (Cx*Ss*EarthAtmosphere50 (1,y)/(2*Ms)); % коэффициент
Shot3=@(t,z) [z(3); z(4); -Gamma(z(2)).*z(3).*sqrt(z(3).^2+z(4).^2); -g0-
Gamma(z(2))*z(4).*sqrt(z(3).^2+z(4).^2)];
[T,Z]=ode45(Shot3,[T0:dT:TN],[X0 Y0 XP0 YP0]); % решение системы ОДУ
figure('Color', [1 1 1]);
```

```
hL1=plot(T,Z(:,1)./1000,T,Z(:,2)./1000); grid; % зависимость координаты от
времени
ylabel('\itx,y, [км]','fontsize',14);
xlabel('\itt, [c]','fontsize',14);
set(hL1(1), 'LineWidth', 2, 'Color', 'b');
set(hL1(2), 'LineWidth', 2, 'Color', 'g');
```

Результаты расчетов зависимости от времени горизонтальной и вертикальной координаты снаряда парижской пушки приведены на Рис. 14.

Рис. 14

Как видно из графика время полета снаряда возросло до ~175 с, дальность до ~140 км, а максимальная высота, на которую поднимается снаряд, составила почти 40 км. Результат моделирования соответствует реальным характеристикам пушки. Такие характеристики делают ее уникальным сверхдальнобойным орудием, не превзойденным до настоящего времени.

Прыжок из стратосферы Феликса Баумгартнера

14 октября 2012 года состоялась успешная реализация проекта Red Bull Stratos. Суть проекта заключалась в том, что скайдайвер Феликс Баумгартнер поднялся на стратостате, воздушном шаре, наполненный гелием, к которому прикреплена специальная капсула, на высоту 39069 метра и совершил свободное падение в скафандре на Землю. Видеозапись свободного полета Феликса Баумгартнера можно посмотреть здесь.

Время свободного падения составило 4 минуты 19 секунд. В ходе снижения, Баумгартнер достиг скорости звука, а затем, тормозящее действие более плотных слоёв воздуха стало снижать его скорость. На высоте 1500 метров, когда скорость упала до 277 км/ч, он раскрыл парашют. Масса Баумгартнера со снаряжением составляла 118 кг.

На момент события зарегистрированы четыре рекорда Баумгартнера – самая большая высота прыжка с парашютом, самая большая дистанция свободного падения, самый высокий пилотируемый полёт на стратостате и самая высокая скорость свободного падения, которая превысила скорость звука и составила 1357.6 километра в час.

Рассчитаем характеристики свободного полета скайдайвера. Скорость его движения большая, поэтому логично использовать для силы лобового сопротивления выражение

$$\vec{F}_D = -\beta \left| \vec{V} \right| \vec{V}$$
, $\beta = CS\rho/2$.

Будем полагать, что скайдайвер – это шар. Это, странное на первый взгляд, утверждение хорошо тем, что позволяет, не делая иных предположений, рассчитать все параметры падающего тела. А насколько хорошо такое предположение, выяснится по результатам расчетов.

Коэффициент лобового сопротивления шара – 0.4, однако, в расчетах будем использовать значение C=0.5. Плотность человека с хорошей точности равна плотности воды – $\rho_b=1 \ c/cm^3$. При массе скайдайвера $m=118 \ \kappa c$ и заданной плотности из соотношения

$$V = \frac{4\pi}{3}R^3 = \frac{m}{\rho_b}$$

можем найти радиус шара, а, следовательно, и характеристическую площадь шара

$$S = \pi R^2 = 4\pi \left(\frac{3m}{4\pi\rho_b}\right)^{2/3}.$$

Замена переменных, понижающая порядок ОДУ, приводит к системе

$$\begin{cases} z_1' = z_2 &, z_1(0) = H \\ z_2' = -g + \gamma z_2^2 &, z_2(0) = 0 \end{cases}, \text{ где } z = \begin{pmatrix} y \\ V_y \end{pmatrix}, \text{ a } \gamma = 2\pi \frac{C\rho}{m} \left(\frac{3m}{4\pi\rho_b}\right)^{2/3}.$$

Сила сопротивления в случае свободного падения направлена против силы тяжести, поэтому знак перед коэффициентом у меняется на плюс.

Расчет плотности стандартной атмосферы, входящей в коэффициент *у*, проведем, используя функцию *EarthAtmosphere50*. Листинг сценария приведен ниже.

```
% время, скорости и высота в полете Феликса Баумгартнера
Te=[10.01;20.02;30.10;40.27;49.92;58.96;66.00;88.32;115.05;141.74;179.11;205.
81;237.84;253.89];
Ve=[98.06;195.56;278.89;347.22;378.61;346.67;272.5;173.89;113.89;99.44;80;61.
11;59.72;56.39];
He=[38474;36980;34563;31338;27849;24551;22097;17504;13759;10972;7685;5768;382
7;2909];
g0=9.80665; % ускорение свободного падения
Hmax=39069; % высота подьема стратостата, м
Mp=118; % масса скайдрайвера, кг
Cx=0.5; % коэффициент лобового сопротивления
rop=1000; % плотность воды, кг/м3
Sp=4*pi*(3*Mp/(4*pi*rop))^(2/3); % характеристическая площадь шара, м2
S1=Cx*Sp/(2*Mp); % коэффициент
Jump1=@(t,y) [y(2); -g0+S1.*EarthAtmosphere50(1,y(1))*y(2).^2]; % правая
часть ОДУ
```

```
T0=0;
         % время начала движения
TN=250;
         % время окончания движения
dT=0.01;
         % шаг по времени
Y0=Hmax; % начальная координата
         % начальная скорость
YP0=0;
[T,Y]=ode45(Jump1,[T0:dT:TN],[Y0, YP0]); % решение системы ОДУ
figure('Color',[1 1 1]);
hold on;
plot(T,Y(:,1)/1000,'b','LineWidth', 2); % зависимость высоты от времени
(расчет)
plot(Te,He/1000,'LineStyle', 'none','Marker', 'o', 'MarkerSize', 6, 'Color',
'k', 'MarkerFaceColor', 'k'); % зависимость высоты от времени (опыт)
ylabel('\ity, [KM]','fontsize',14);
xlabel('\itt, [c]','fontsize',14);
grid;
axis ([0 250 0 40]);
figure('Color', [1 1 1]);
hold on;
plot(T,Y(:,2), 'm', 'LineWidth', 2); % зависимость скорости от времени (расчет)
plot(Te,-Ve,'LineStyle', 'none','Marker', 'o', 'MarkerSize', 6, 'Color', 'k',
'MarkerFaceColor', 'k'); % зависимость скорости от времени (опыт)
ylabel('\itV, [m/c]','fontsize',14);
xlabel('\itt, [c]','fontsize',14);
grid;
```

Результаты расчетов приведены на Рис. 15 и Рис. 16, там же, черными маркерами показаны характеристики реального полета.

Рис. 15 Высота

Рис. 16 Скорость

Зависимость высоты и скорости от времени в целом соответствуют реальному полету. Между 40-й и 70-й секундами преодолен звуковой барьер, в районе 50-й секунды скорость достигает максимума, после чего начнет снижаться.