НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ **КАЛЕНДАРНЫЙ ПЛАН**

учебных занятий по дисциплине: Физика

Кафедра: ПиТФ Факультет: ФТФ

Курс: 2 Семестр: 3

Учебный год: 2021/2022

Лектор: к.ф.-м.н. доц. Топовский А.В.

Заведующий кафедрой:

д.ф.-м.н. проф., Дубровский В.Г.

Дата: 07.02.2022 г.

			_			
Неделя	Лекции	часы	Практические (семинарские) занятия	часы	Номер и название лабораторных работ	часы
1	2	3	4	5	6	7
1 неделя с 7.02 по 13.02	1. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции. 2. Потенциал электрического поля. Связь напряженности и потенциала. Силовые линии и эквипотенциальные поверхности.	4	1. Закон Кулона. 2. Применение принципа суперпозиции для расчета напряженности электростатического поля.	4	№10. Изучение электростатиче- ского поля мето-	4
2 неделя с 14.02 по 20.02	 Поле электрического диполя. Понятие о мультипольном разложении потенциала. Теорема Гаусса. Применение теоремы Гаусса для расчета электрических полей. 	4	1. Потенциал электростатического поля. 2. Поле системы зарядов на большом расстоянии от нее.	4	дом моделирова- ния.	4
3 неделя с 21.02 по 27.02	1. Элементы теории поля. Математические операции над полями: градиент скалярного поля, дивергенция и ротор векторного поля. Теоремы Стокса и Гаусса-Остроградского. 2. Дифференциальная форма записи основных уравнений электростатики.	4	1. Применение теоремы Гаусса для расчета электростатических полей. 2. Применение теоремы Гаусса для расчета электростатических полей.	4	№ 11. Изучение ра- боты источника постоянного тока.	4
4 неделя с 28.02 по 6.03	1. Проводники в электрическом поле. Емкость. Конденсаторы. 2. Уравнения Лапласа и Пуассона. Применение этих уравнений к расчету электростатических полей.	4	1. Проводник в электрическом поле. 2. Проводник в электрическом поле.	4		4
5 неделя с 7.03 по 13.03	1. Метод электрических «изображений». 2. Диполь в электрическом поле. Диэлектрики в электрическом поле. Поляризация диэлектриков.	4	1. Применение уравнений Лапласа и Пуассона к расчету электростатических полей. 2. Метод «изображений».	4	№ 12. Определение удельного заряда	4
6 неделя с 14.03 по 20.03	1. Уравнения электростатики диэлектриков. 2. Граничные условия на границе двух диэлектриков. Расчет электростатических полей в присутствии диэлектриков.	4	 Диполь в электрическом поле. Электростатическое поле в диэлектрике. 	4	электрона.	4

	1 Marin a area		1 Энакета а полити			
7 неделя с 21.03 по 27.03	1. Микроскопическая теория поляризации неполярных и полярных диэлектриков. 2. Микроскопическая теория поляризации полярных диэлектриков. Пьезо-, пиро- и сегнето-электрики.	4	1. Электростатическое поле в диэлектрике. 2. Электроемкость. Метод «изображений» для диэлектрических сред.	4	№ 13. Измерение горизонтальной составляющей магнитного поля Земли и исследова-	4
8 неделя с 28.03 по 3.04	1. Энергия взаимодействия электрических зарядов. Энергия электрического поля. 2. Энергия электрического поля в диэлектрике. Энергетический метод вычисления сил в электрическом поле.	4	1. Энергия взаимодействия электрических зарядов. 2. Энергетический метод вычисления сил в электрическом поле.	4	ние магнитного поля кругового тока.	4
9 неделя с 4.04 по 10.04	1. Электрический ток. Закон Ома в интегральной и дифференциальной формах. Классическая теория электропроводности. 2. Уравнение непрерывности. Электродвижущая сила. Граничные условия для полей при наличии тока.	4	1. Самостоятельная работа. Законы постоянного тока. 2. Законы постоянного тока. Срок сдачи 1-ой части РГЗ.	4	№ 14. Измерение диэлектрической проницаемости	4
10 неделя с 11.04 по 17.04	1. Работа и мощность постоянного тока. Закон Джоуля –Ленца. Правила Кирхгофа. 2. Стационарное магнитное поле. Сила Ампера и сила Лоренца. Закон Био-Савара-Лапласа. Теорема Гаусса для магнитного поля.	4	1. Сила Лоренца. Движение заряженных частиц в магнитном поле. 2. Сила Ампера.	4	конденсаторного масла.	4
11 неделя с 18.04 по 24.04	1. Теорема о циркуляции магнитного поля. Расчеты магнитных полей токов. Векторный потенциал магнитного поля. 2. Магнитный диполь и его магнитное поле. Магнитный диполь во внешнем поле.	4	1. Применение закона Био-Савара-Лапласа для расчета магнитных полей. 2. Применение закона Био-Савара-Лапласа для расчета магнитных полей.	4	№ 5. Изучение свойств диэлектриков в поле плос-	4
12 неделя с 25.04 по 1.05	1. Магнитное поле в веществе Намагничивание магнетиков. Пара-, диа- и ферромагнетизм, постоянные магниты. 2. Уравнения для магнитных полей в средах. Граничные условия на границе двух магнетиков.	4	1. Расчет магнитного поля с помощью теоремы о циркуляции магнитного поля. 2. Векторный потенциал магнитного поля.	4	кого конденсатора.	
13 неделя с 2.05 по 8.05	1. Расчет магнитостатических полей в средах. Магнитные цепи. 2. Микроскопические теории пара-, диа- и ферромагнетизма. Простая микроскопическая теория ферромагнетизма.	4	1. Магнитный диполь и его магнитное поле. 2. Магнитное поле в среде.	4	№13. Изучение зависимости индукции электрического поля D от напряженности электрического поля E в сегнето-электрике.	4

14 неделя с 9.05 по 15.05	1. Электромагнитная индукция. Закон электромагнитной индукции Фарадея. Правило Ленца. 2. Индуктивность проводника. Явление самоиндукции. Процесс установления тока в цепи, содержащей индуктивность.	4	1. Магнитное поле в среде. 2. Расчет магнитных цепей.	4		4
15 неделя с 16.05 по 22.05	1. Взаимная индукция. Технические применения электромагнитной индукции. 2. Магнитная энергия и её локализация в пространстве. Объёмная плотность энергии. Энергетический метод вычисления сил в магнитном поле.	4	1.Электромагнитная индукция. Закон Фарадея и правило Ленца. 2.Электромагнитная индукция. Расчет индуктивности проводников. Срок сдачи 2-ой части РГЗ.	4	№16. Изучение зависимости магнитной индукции В от напряженности магнитного поля Н	4
16 неделя с 23.05 по 29.05	1. Ток смещения. Уравнения Максвелла в интегральной и в дифференциальной форме. 2. Энергия электромагнитного поля. Поток энергии. Вектор Пойнтинга.	4	1. Самостоятельная работа. Взаимная индукция. 2. Энергия магнитного поля.	4	в ферромагнетике.	4
17 неделя с 30.05 по 5.06	2. Электродинамика и теория относительности. Законы преобразования электрического и магнитного полей.	4	1. Ток смещения. Теория Максвелла. 2. Энергия электромагнитного поля. Поток энергии.	4	Ликвидация задол- женностей.	4
18 неделя с 6.06 по 12.06	 Демонстрационные эксперименты по электромагнетизму. Заключительная лекция. 	4	1. Электродинамика и теория относительности. 2. Заключительное занятие.	4		4

Распределение часов обязательных аудиторных занятий и самостоятельной работы студентов по курсу:

Лекции	Практиче- ские занятия	Лабораторные работы	Расчетно-графи- ческие задания	Контрольная работа	Итоговая аттеста- ция
72	72	36	1 РГЗ (из 3 ча- стей).	1	экзамен