- 1. Дополните недостающие обозначения х в следующих реакциях:
- 1) $^{235}U + ^{1}_{0}n \rightarrow ^{145}La + x + 4^{1}_{0}n;$
- 2) ${}^{235}_{x}U + {}^{1}_{0}n \rightarrow {}^{99}_{x}Zr + {}^{135}_{x}Te + x_{0}^{1}n$;
- 3) ${}^{232}_{x}$ Th + ${}^{1}_{0}n \rightarrow x + {}^{140}_{x}$ Xe + $3{}^{1}_{0}n$;
- 4) ${}_{x}^{x}$ Pu + ${}_{0}^{1}n \rightarrow {}_{x}^{80}$ Se + ${}_{x}^{157}$ Nd + $3{}_{0}^{1}n$.
- 2. Запищите β^- –распад магния
- 3. Определите, что и во сколько раз продолжительнее три периода полураспада или два средних времени жизни радиоактивного атома.
- 4. Определите число протонов и нейтронов, входящих в состав ядер трёх изотопов бора: 1) , 2) , 3) .
- 5. Германиевый образец нагревают от 0 $^{\circ}$ C до 17 $^{\circ}$ C. Принемая ширину запрещённой зоны $\Delta E = 0.72$ эВ, определите во сколько раз возрастает его удельнач проводимость.
- 6. Определите ширину запрещенной зоны собственного полупроводника, если при температуре T_1 и T_2 (T_2 > T_1) его сопротивление соответсвенно равно R_1 и R_2 .
- 7. Удельное сопротивление некоторого чистого беспримесного полупроводника при комнатной температуре $\rho = 50$ Ом*см. После включения источника света оно стало $\rho_1 = 40$ Ом*см, а через t = 8 мс после выключения источника света удельное сопротивление оказалось $\rho_2 = 45$ Ом*см. Найти среднее время жизни электронов проводимости и дырок.
- 8. Определите, какая часть свободных электронов в металле при $T=0~{\rm K}$ имеет энергию меньше четверти энергии Ферми.
- 9. Найти механический момент молекулы кислорода, вращательная энергия которой E = 2,16 мэB, а расстояние между ядрами d = 121 пм.
- 10. Оценить максимальные значения энергии и импульса фонона (звукового кванта) в меди, дебаевская температура которой равна 330 К.
- 11. Определить относительное увеличение $\Delta M_e/M_e$ энергетической светимости черного тела при увеличении его температуры на 1%.
- 12. Вследствие изменения температуры черного тела максимум спектральной плотности $(M_{\lambda,\,T})_{max}$ сместился с λ_1 =2,4 мкм на λ_2 =0,8 мкм. Как и во сколько раз изменились энергетическая светимость M_e тела и максимальная спектральная плотность энергетической светимости?
- 13. На поверхность лития падает монохроматический свет (λ =310 нм). Чтобы прекратить эмиссию электронов, нужно приложить задерживающую разность потенциалов U не менее 1,7 В. Определить работу выхода А.
- 14. Определить длину волны λ, массу m и импульс p фотона с энергией ε=1 МэВ. Сравнить массу этого фотона с массой покоящегося электрона.

- 15. С помощью постулатов Бора дать вывод для радиуса r_n боровской орбиты электрона в водородоподобном атоме. Найти отношение $r_{\text{He}}^+/r_{\text{H}}$ радиусов боровских орбит для иона гелия He^+ и атома водорода H, находящихся в основном состоянии.
- 16. Предполагая, что неопределенность координаты движущейся частицы равна дебройлевской длине волны, определить относительную неточность $\Delta p/p$ импульса этой частицы.
- 17. Определить длину волны де Бройля λ электрона, если его кинетическая энергия T=1 кэВ.
- 18. Собственная функция, описывающая состояние частицы в потенциальном ящике, имеет вид $\psi_n(x)$ =C $\sin(\pi n x/l)$. Используя условия нормировки, определить постоянную С.
- 19. Частица массы m движется в одномерном потенциальном поле $U = kx^2/2$ (гармонический осциллятор). Оценить с помощью соотношения неопределенностей минимально возможную энергию частицы в таком поле.
- 20. Найти постоянную распада и среднее время жизни радиоактивного изотопа Co^{55} , если известно, что его активность уменьшается на 4,0% за час? Продукт распада нерадиоактивен.